A027306 a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0
Examples
From _Gus Wiseman_, Aug 20 2021: (Start) The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are: 1 11 101 1011 10011 110 1101 10101 111 1110 10110 1111 10111 11001 11010 11011 11100 11101 11110 11111 The version allowing an initial zero is A058622. (End)
References
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Crossrefs
a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by A008315.
Column k=2 of A226873. - Alois P. Heinz, Jun 21 2013
The even bisection is A000302.
The odd bisection appears to be A032443.
Programs
-
GAP
List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
-
Haskell
a027306 n = a008949 n (n `div` 2) -- Reinhard Zumkeller, Nov 14 2014
-
Magma
[2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
-
Maple
a:= proc(n) add(binomial(n, j), j=0..n/2) end: seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
-
Mathematica
Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}] (* Second program: *) a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
-
PARI
a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k).
Odd terms are 2^(n-1). Also a(2n) - 2^(2n-1) is given by A001700. a(n) = 2^n + (n mod 2)*binomial(n, (n-1)/2).
E.g.f.: (exp(2x) + I_0(2x))/2.
O.g.f.: 2*x/(1-2*x)/(1+2*x-((1+2*x)*(1-2*x))^(1/2)). - Vladeta Jovovic, Apr 27 2003
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 2*x - 1/(1 - x) )^n.
O.g.f.: (1/2)*( 1/sqrt(1 - 4*x^2) + 1/(1 - 2*x) ).
Inverse binomial transform is (-1)^n*A246437(n).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + ... is the o.g.f. for A001405. (End)
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n-1,(2n+1-(-1)^n)/4 -k). - Anthony Browne, Jun 18 2016
D-finite with recurrence: n*a(n) + 2*(-n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017
Extensions
Better description from Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000
Comments