A027471 a(n) = (n-1)*3^(n-2), n > 0.
0, 1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, 2125764, 6908733, 22320522, 71744535, 229582512, 731794257, 2324522934, 7360989291, 23245229340, 73222472421, 230127770466, 721764371007, 2259436291848
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..700
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- Milan Janjić, Two Enumerative Functions
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Frank Ellermann, Illustration of binomial transforms
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 715
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Mark Shattuck, Enumeration of consecutive patterns in flattened Catalan words, arXiv:2502.10661 [math.CO], 2025. See pp. 3, 20.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Programs
-
GAP
List([1..40], n-> (n-1)*3^(n-2)); # Muniru A Asiru, Jul 15 2018
-
Magma
[(n-1)*3^(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
-
Maple
seq((n-1)*3^(n-2), n=1..40); # Muniru A Asiru, Jul 15 2018
-
Mathematica
Table[(n-1)3^(n-2),{n,30}] (* or *) LinearRecurrence[{6,-9},{0,1},30] (* Harvey P. Dale, Apr 14 2016 *) Range[0, 24]! CoefficientList[ Series[x*Exp[3 x], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 03 2018 *)
-
PARI
a(n)=if(n<1, 0, (n-1)*3^(n-2));
-
Sage
[3^(n-2)*(n-1) for n in (1..30)] # G. C. Greubel, May 20 2021
Formula
From Wolfdieter Lang: (Start)
G.f.: (x/(1-3*x))^2.
E.g.f.: (1 + (3*x-1)*exp(3*x))/9.
a(n) = 3^(n-2)*(n-1) (convolution of A000244, powers of 3, with itself). (End)
a(n) = 6*a(n-1) - 9*a(n-2), n > 2, a(1)=0, a(2)=1. - Barry E. Williams, Jan 13 2000
a(n) = A036290(n-1)/3, for n>0. - Paul Barry, Feb 06 2004 [corrected by Jerzy R Borysowicz, Apr 03 2025]
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
From Paul Barry, Feb 15 2005: (Start)
a(n) = (1/3)*Sum_{k=0..2n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = (1/3)*Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j-k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k+1). (End)
Sum_{n>=2} 1/a(n) = 3*log(3/2). - Jaume Oliver Lafont, Sep 19 2009
a(n) = 3*a(n-1) + 3^(n-2) (with a(1)=0). - Vincenzo Librandi, Dec 30 2010
Sum_{n>=2} (-1)^n/a(n) = 3*log(4/3). - Amiram Eldar, Oct 28 2020
Extensions
Edited by Michael Somos, Jul 10 2003
Comments