cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024023 a(n) = 3^n - 1.

Original entry on oeis.org

0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0

Views

Author

Keywords

Comments

Number of different directions along lines and hyper-diagonals in an n-dimensional cubic lattice for the attacking queens problem (A036464 in n=2, A068940 in n=3 and A068941 in n=4). The n-dimensional direction vectors have the a(n)+1 Cartesian coordinates (i,j,k,l,...) where i,j,k,l,... = -1, 0, or +1, excluding the zero-vector i=j=k=l=...=0. The corresponding hyper-line count is A003462. - R. J. Mathar, May 01 2006
Total number of sequences of length m=1,...,n with nonzero integer elements satisfying the condition Sum_{k=1..m} |n_k| <= n. See the K. A. Meissner link p. 6 (with a typo: it should be 3^([2a]-1)-1). - Wolfdieter Lang, Jan 21 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are disjoint and either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Number of neighbors in Moore's neighborhood in n dimensions. - Dmitry Zaitsev, Nov 30 2015
Number of terms in conjunctive normal form of Boolean expression with n variables. E.g., a(2) = 8: [~x, ~y, x, y, ~x|~y, ~x|y, x|~y, x|y]. - Yuchun Ji, May 12 2023
Number of rays of the Coxeter arrangement of type B_n. Equivalently, number of facets of the n-dimensional type B permutahedron. - Jose Bastidas, Sep 12 2023

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Ternary......decimal:
0...............0
2...............2
22..............8
222............26
2222...........80
22222.........242
222222........728
2222222......2186
22222222.....6560
222222222...19682
2222222222..59048
etc...........etc.
(End)
Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors.
A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
		

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Cf. triangle A013609.
Cf. second column of A145901.

Programs

Formula

a(n) = A000244(n) - 1.
a(n) = 2*A003462(n). - R. J. Mathar, May 01 2006
A128760(a(n)) > 0. - Reinhard Zumkeller, Mar 25 2007
G.f.: 2*x/((-1+x)*(-1+3*x)) = 1/(-1+x) - 1/(-1+3*x). - R. J. Mathar, Nov 19 2007
a(n) = Sum_{k=1..n} Sum_{m=1..k} binomial(k-1,m-1)*2^m, n >= 1. a(0)=0. From the sequence combinatorics mentioned above. Twice partial sums of powers of 3.
E.g.f.: e^(3*x) - e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = A024101(n)/A034472(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = 3*a(n-1) + 2 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
E.g.f.: -E(0) where E(k) = 1 - 3^k/(1 - x/(x - 3^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n) = A227048(n,A020914(n)). - Reinhard Zumkeller, Jun 30 2013
Sum_{n>=1} 1/a(n) = A214369. - Amiram Eldar, Nov 11 2020
a(n) = Sum_{k=1..n} 2^k*binomial(n,k). - Ridouane Oudra, Jun 15 2025
From Peter Bala, Jul 01 2025: (Start)
For n >= 1, a(2*n)/a(n) = A034472(n) and a(3*n)/a(n) = A034513(n).
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A003462 (k = 2), A006100 (k = 3), A006101 (k = 4), A006102 (k = 5), A022196 (k = 6), A022197 (k = 7), A022198 (k = 8), A022199 (k = 9), A022200 (k = 10), A022201 (k = 11), A022202 (k = 12) and A022203 (k = 13).
The following are all examples of telescoping series:
Sum_{n >= 1} 3^n/(a(n)*a(n+1)) = 1/2^2; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/(2*8^2).
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 3^n/(a(n)*a(n+2)) = 5/64; Sum_{n >= 1} (-3)^n/(a(n)*a(n+2)) = -3/64.
Sum_{n >= 1} 3^n/(a(n)*a(n+4)) = 703/83200; Sum_{n >= 1} (-3)^n/(a(n)*a(n+4)) = - 417/83200. (End)

A245027 Divisors of 7^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 32, 36, 38, 39, 40, 43, 45, 48, 50, 52, 57, 60, 65, 72, 75, 76, 78, 80, 86, 90, 95, 96, 100, 104, 114, 117, 120, 129, 130, 144, 150, 152, 156, 160, 171, 172, 180, 181, 190, 195, 200, 208
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

Number of divisors of k^12-1 for k = 2..20: 24 (2), 80 (3), 96 (4), 240 (5), 128 (6), 864 (7), 512 (8), 384 (9), 256 (10), 1920 (11), 256 (12), 960 (13), 384 (14), 448 (15), 768 (16), 1792 (17), 768 (18), 3840 (19), 384 (20).
The following triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2850, 4560, 8385, 14706, 16290, 5915080, 1730160900.

Examples

			13841287200 = 2^5 * 3^2 * 5^2 * 13 * 19 * 43 * 181.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A003543 (k=8), A027902 (k=9), A027897 (k=10), A245028 (k=11).

Programs

  • Magma
    Divisors(7^12-1);
    
  • Mathematica
    Divisors[7^12 - 1]
  • Maxima
    divisors(7^12-1);
  • PARI
    divisors(7^12-1)
    
  • Sage
    divisors(7^12-1)
    

A245028 Divisors of 11^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 28, 30, 35, 36, 37, 38, 39, 40, 42, 45, 48, 52, 56, 57, 60, 61, 63, 65, 70, 72, 74, 76, 78, 80, 84, 90, 91, 95, 104, 105, 111, 112, 114, 117, 120, 122, 126, 130, 133, 140, 144, 148, 152
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

See Comments section in A245027.
The following 36 triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 21, 28, 36, 45, 78, 91, 105, 120, 171, 190, 210, 630, 666, 703, 741, 780, 1596, 1830, 4095, 4560, 5460, 6216, 16653, 33670, 46360, 103740, 115440, 221445, 274170, 365085, 392303547090.
The following terms of A001082 (without 1, 21 and 120, which appear in the previous list) are in sequence: 5, 8, 16, 40, 56, 65, 133, 208, 280, 456, 481, 560, 936, 1008, 1281, 1365, 1680, 1776, 1976, 4880, 5985, 10920, 11285, 44408, 47880, 590520, 658008, 731120, 973560, 1046142792240.
Also, 4/5 of the members are divisible by 3 and 2/3 of them are even.

Examples

			3138428376720 = 2^4 * 3^2 * 5 * 7 * 13 * 19 * 37 * 61 * 1117.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A245027 (k=7), A003543 (k=8), A027902 (k=9), A027897 (k=10).

Programs

  • Magma
    Divisors(11^12-1);
    
  • Mathematica
    Divisors[11^12 - 1]
  • Maxima
    divisors(11^12-1);
  • PARI
    divisors(11^12-1)
    
  • Sage
    divisors(11^12-1)
    
Showing 1-3 of 3 results.