A029858 a(n) = (3^n - 3)/2.
0, 3, 12, 39, 120, 363, 1092, 3279, 9840, 29523, 88572, 265719, 797160, 2391483, 7174452, 21523359, 64570080, 193710243, 581130732, 1743392199, 5230176600, 15690529803, 47071589412, 141214768239
Offset: 1
Examples
For the Sierpiński triangle, Level 1 is a triangle, so a(1) = 0. Level 2 has three corners (degree 2) and three degree 4 vertices, so a(2) = 3. The level 2 Hanoi graph has 3 triangles joined by 3 edges, so a(2+1) = 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Natalia Agudelo Muñetón, Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, and Isaías David Marín Gaviria, Brauer Configuration Algebras and Their Applications in Graph Energy Theory, Mathematics (2021) Vol. 9, 3042.
- Alex Born, Cor A. J. Hukrnes, and Gerhard J. Woeginger, How to detect a counterfeit coin: adaptive versus non-adaptive solutions, Inf. Proc. Lett. 86 (2003) 137-141.
- Gary Darby, The Counterfeit Coin
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 17.
- Lorenz Halbeisen and Norbert Hungerbuhler, The general counterfeit coin problem, Discr. Math 147 (1-3) (1995) 139-150, Theorem 1 with b=1.
- Andreas Hinz, Sandi Klavzar, and Sara Sabrina Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Bennet Manvel, Counterfeit coin problems, Math. Mag. 50 (2) (1977) 90-92, theorem 2.
- Marco Ripà, Solving the 106 years old 3^k points problem with the clockwise-algorithm, Journal of Fundamental Mathematics and Applications, 2020, 3(2), 84-97.
- Allen Stenger and Jack Wert, The Twelve Coins (or Twelve bags of Gold)
- Eric Weisstein's World of Mathematics, Apollonian Network
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Eric Weisstein's World of Mathematics, Minimum Vertex Cut
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Haskell
a029858 = (`div` 2) . (subtract 3) . (3 ^) a029858_list = iterate ((+ 3) . (* 3)) 0 -- Reinhard Zumkeller, May 09 2012
-
Magma
[(3^n-3)/2: n in [1..30]]; // Vincenzo Librandi, Jun 05 2011
-
Maple
a:=n->sum(3^j,j=1..n): seq(a(n),n=0..23); # Zerinvary Lajos, Jun 27 2007
-
Mathematica
Table[(3^n - 3)/2, {n, 24}] (* Alonso del Arte, Dec 29 2014 *)
-
PARI
a(n)=(3^n-3)\2 \\ Charles R Greathouse IV, Apr 17 2012
Formula
a(n) = 3*a(n-1) + 3. - Alexandre Wajnberg, Apr 25 2005
O.g.f: 3*x^2/((1-x)*(1-3*x)). - R. J. Mathar, Jun 18 2008
a(n) = 3^(n-1) + a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = 3*A003462(n-1). - R. J. Mathar, Sep 10 2015
E.g.f.: 3*(-1 + exp(2*x))*exp(x)/2. - Ilya Gutkovskiy, Apr 19 2016
a(n) = A067771(n-1) - 3. - Allan Bickle, Jul 30 2020
a(n) = sigma(A008776(n-2)) for n>=2. - Flávio V. Fernandes, Apr 20 2021
Extensions
Corrected by T. D. Noe, Nov 07 2006
Comments