cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032793 Numbers that are congruent to {1, 2, 4} mod 5.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 46, 47, 49, 51, 52, 54, 56, 57, 59, 61, 62, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 101, 102, 104, 106, 107, 109
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = floor((5*n-2)/3). - Gary Detlefs, May 14 2011
G.f.: x*(1+x+2*x^2+x^3)/((1+x+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = (15*n - 9 + 2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k - 1, a(3k-1) = 5k - 3, a(3k-2) = 5k - 4. (End)
E.g.f.: (9 + 3*(5*x - 3)*exp(x) + 2*sqrt(3)*sin(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2)))/9. - Ilya Gutkovskiy, Jun 14 2016
From Guenther Schrack, Oct 31 2019: (Start)
a(n) = a(n-3) + 5 with a(1) = 1, a(2) = 2, a(3) = 4 for n > 3.
a(n) = (15*n - 9 + (w^(2*n) - w^n)*(1 + 2*w))/9 where w = (-1 + sqrt(-3))/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(10-2*sqrt(5))*Pi/10 - log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023

Extensions

Better description from Michael Somos, Jun 08 2000