cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A104257 Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2

Views

Author

Ralf Stephan, Mar 05 2005

Keywords

Comments

Sums of distinct powers of a. Numbers having only {0,1} in a-ary representation.

Examples

			Array begins:
  2,  3,  4,  5,  6,  7,   8,   9, ...
  3,  4,  9, 10, 12, 13,  27,  28, ...
  4,  5, 16, 17, 20, 21,  64,  65, ...
  5,  6, 25, 26, 30, 31, 125, 126, ...
  6,  7, 36, 37, 42, 43, 216, 217, ...
  7,  8, 49, 50, 56, 57, 343, 344, ...
  8,  9, 64, 65, 72, 73, 512, 513, ...
  9, 10, 81, 82, 90, 91, 729, 730, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
    T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
    Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
  • PARI
    T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
  • Python
    def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
    print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
    

Formula

T(a, n) = (1/(a-1))*Sum_{j>=1} floor((n+2^(j-1))/2^j) * ((a-2)*a^(j-1) + 1).
T(a, n) = (1/(a-1))*Sum_{j=1..n} ((a-2)*a^A007814(j) + 1).
G.f. of a-th row: (1/(1-x)) * Sum_{k>=0} a^k*x^2^k/(1+x^2^k).
Recurrence: T(a, 2n) = a*T(a, n), T(a, 2n+1) = a*T(a, n) + 1, T(a, 0) = 0.

A077723 Primes which can be expressed as sum of distinct powers of 9.

Original entry on oeis.org

739, 811, 6571, 59779, 65701, 532261, 538093, 591301, 597133, 597781, 4783699, 4789621, 4842109, 4849399, 5314411, 5314501, 5373469, 5374279, 5380831, 43047541, 43112341, 43113061, 43643773, 43643863, 47837071, 47888821
Offset: 1

Views

Author

Amarnath Murthy, Nov 19 2002

Keywords

Comments

Primes whose base 9 representation contains only zeros and 1's.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000000]],Union[Most[Rest[DigitCount[#,9]]]]=={0}&] (* Harvey P. Dale, Jul 31 2013 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (vecmax(digits(p, 9)) <= 1, print1(p, ", ")););} \\ Michel Marcus, Oct 10 2014

Extensions

More terms from Sascha Kurz, Jan 03 2003

A063012 Sum of distinct powers of 20; i.e., numbers with digits in {0,1} base 20; i.e., write n in base 2 and read as if written in base 20.

Original entry on oeis.org

0, 1, 20, 21, 400, 401, 420, 421, 8000, 8001, 8020, 8021, 8400, 8401, 8420, 8421, 160000, 160001, 160020, 160021, 160400, 160401, 160420, 160421, 168000, 168001, 168020, 168021, 168400, 168401, 168420, 168421, 3200000, 3200001, 3200020, 3200021, 3200400, 3200401
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2001

Keywords

Examples

			a(5) = 401 since 5 written in base 2 is 101 so a(5) = 1*20^2 + 0*20^1 + 1*20^0 = 400 + 0 + 1 = 401.
		

Crossrefs

A063013 is similar in a different way.

Programs

  • Maple
    a:= proc(n) `if`(n<2, n, irem(n, 2, 'r')+20*a(r)) end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Apr 04 2025
  • Mathematica
    Table[FromDigits[IntegerDigits[n,2],20],{n,0,40}] (* Harvey P. Dale, Jul 21 2014 *)
  • PARI
    baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
    baseI(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) }
    { for (n=0, 1000, write("b063012.txt", n, " ", baseI(baseE(n, 2), 20)) ) } \\ Harry J. Smith, Aug 15 2009
    
  • Python
    def A063012(n): return int(bin(n)[2:],20) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = a(n-2^floor(log_2(n))) + 20^floor(log_2(n)). a(2n) = 20*a(n); a(2n+1) = a(2n)+1 = 20*a(n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*A009964(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 20^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A077724 a(n) = smallest prime which can be expressed as a sum of distinct powers of n.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 73, 739, 11, 11, 13, 13, 197, 241, 17, 17, 19, 19, 401, 463, 23, 23, 577, 10171901, 677, 757, 29, 29, 31, 31, 32801, 1123, 1336337, 44101, 37, 37, 1483, 59359, 41, 41, 43, 43, 85229, 93151, 47, 47, 110641, 13847169701, 2551, 345157903, 53, 53
Offset: 2

Views

Author

Amarnath Murthy, Nov 19 2002

Keywords

Comments

a(n) = smallest prime whose base n representation contains only zeros and 1's.
Values of n at which a(n) reach record values are: 2, 3, 4, 6, 8, 9, 25, 49, 91, 121, 187, 201, 301, 721, 799, 841... Notably, many of them are squares of primes. - Ivan Neretin, Sep 20 2017

Crossrefs

Programs

  • Mathematica
    Table[i = p = 1; While[! PrimeQ[p], p = FromDigits[IntegerDigits[i++, 2], n]]; p, {n, 2, 53}] (* Ivan Neretin, Sep 20 2017 *)
  • Python
    from itertools import count
    from sympy import isprime
    def A077724(n): return next(filter(isprime,(sum(n**i for i, j in enumerate(bin(m)[-1:1:-1]) if j=='1') for m in count(1)))) # Chai Wah Wu, Apr 04 2025

Extensions

More terms from Sascha Kurz, Jan 03 2003

A097255 Numbers whose set of base 9 digits is {0,8}.

Original entry on oeis.org

0, 8, 72, 80, 648, 656, 720, 728, 5832, 5840, 5904, 5912, 6480, 6488, 6552, 6560, 52488, 52496, 52560, 52568, 53136, 53144, 53208, 53216, 58320, 58328, 58392, 58400, 58968, 58976, 59040, 59048, 472392, 472400, 472464, 472472, 473040
Offset: 0

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 9 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..500000] | Set(IntegerToSequence(n, 9)) subset {0, 8}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,8},IntegerDigits[n,9]]=={0,8};Select[Range[0,500000],fQ] (* or *) FromDigits[#,9]&/@Tuples[{0,8},6](* Vincenzo Librandi, May 25 2012 *)
  • Maxima
    a[0]:0$ a[n]:=9*a[floor(n/2)]+4*(1-(-1)^n)$ makelist(a[n], n, 0, 36); /* Bruno Berselli, May 26 2012 */

Formula

a(n) = 8*A033046(n).
a(2n) = 9*a(n), a(2n+1) = a(2n)+8.

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A037414 Positive numbers having the same set of digits in base 2 and base 9.

Original entry on oeis.org

1, 9, 81, 82, 90, 729, 730, 738, 739, 810, 811, 819, 6561, 6562, 6570, 6571, 6642, 6643, 6651, 6652, 7290, 7291, 7299, 7300, 7371, 7372, 7380, 59049, 59050, 59058, 59059, 59130, 59131, 59139, 59140, 59778, 59779, 59787, 59788, 59859, 59860, 59868, 59869
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A033046.

Programs

  • PARI
    isok(n) = Set(binary(n)) == Set(digits(n, 9)); \\ Michel Marcus, Jan 21 2017

Extensions

Name edited by John Cerkan, Jan 20 2017
a(28)-a(43) from John Cerkan, Jan 20 2017

A190598 Maximal digit in base-9 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2, 3, 4, 5, 6, 7, 8, 3, 3, 3, 3, 4, 5, 6, 7, 8, 4, 4, 4, 4, 4, 5, 6, 7, 8, 5, 5, 5, 5, 5, 5, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2, 3, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2011

Keywords

Crossrefs

Cf. A007095 (base 9), A033046 (indices of 1's), A338090 (indices of 8's).
Cf. A054055 (maximal digit in decimal).

Programs

  • Mathematica
    a[n_] := Max[IntegerDigits[n, 9]]; (* Matej Veselovac, Jul 23 2021 *)
  • PARI
    a(n) = if (n, vecmax(digits(n, 9)), 0); \\ Michel Marcus, Jul 19 2020
    
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return max(digits(n, 9)[1:])
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 23 2021

Formula

From Matej Veselovac, Jul 23 2021: (Start)
a(n) = 1 iff n is in A033046.
a(n) = 8 iff n is in A338090. (End)
Showing 1-8 of 8 results.