A033184 Catalan triangle A009766 transposed.
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1
Examples
Triangle begins: ---+----------------------------------- n\k| 1 2 3 4 5 6 7 ---+----------------------------------- 1 | 1 2 | 1 1 3 | 2 2 1 4 | 5 5 3 1 5 | 14 14 9 4 1 6 | 42 42 28 14 5 1 7 | 132 132 90 48 20 6 1 From _Peter Bala_, Feb 17 2025: (Start) The array factorizes as an infinite product (read from right to left) of triangular arrays: / 1 \ / 1 \ / 1 \ / 1 \ | 1 1 | | 0 1 | | 0 1 | | 1 1 | | 2 2 1 | = ... | 0 0 1 | | 0 1 1 | | 1 1 1 | | 5 5 3 1 | | 0 0 1 1 | | 0 1 1 1 | | 1 1 1 1 | |14 14 9 4 1| | 0 0 1 1 1| | 0 1 1 1 1 | | 1 1 1 1 1 | |... | |... | |... | |... | See Bala, Example 2.1. (End)
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Jean-Luc Baril and Paul Barry, Two kinds of partial Motzkin paths with air pockets, arXiv:2212.12404 [math.CO], 2022.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 3.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq. 14 (2011) # 11.4.3 example 6.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
- Paul Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, The second production matrix of a Riordan array, arXiv:2011.13985 [math.CO], 2020.
- Paul Barry, A Riordan array family for some integrable lattice models, arXiv:2409.09547 [math.CO], 2024. See p. 9.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 15, 29.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4.
- Paul Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- A. Bernini, M. Bouvel and L. Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18 (2007), No. 3-4, pp. 223-237.
- S. Brlek, E. Duchi, E. Pergola and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.
- Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, Combinatorial identities related to 2X2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
- David Callan, A recursive bijective approach to counting permutations..., arXiv:math/0211380 [math.CO], 2002.
- N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- Matteo Cervetti and Luca Ferrari, Enumeration of Some Classes of Pattern Avoiding Matchings, with a Glimpse into the Matching Pattern Poset, Annals of Combinatorics (2022).
- Xiaomei Chen, Counting humps and peaks in Motzkin paths with height k, arXiv:2412.00668 [math.CO], 2024. See p. 6.
- Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
- Gi-Sang Cheon, S.-T. Jin and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137; Proceedings of the 19th ILAS Conference, Seoul, South Korea 2014.
- Lapo Cioni and Luca Ferrari, Preimages under the Queuesort algorithm, arXiv preprint arXiv:2102.07628 [math.CO], 2021; Discrete Math., 344 (2021), #112561.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- FindStat - Combinatorial Statistic Finder, The number of touch points of a Dyck path, The number of initial rises of a Dyck paths, The number of nodes on the left branch of the tree, The number of subtrees.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Peter M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296. [From _Abdullahi Umar_, Oct 02 2008]
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, On 102-avoiding inversion sequences, arXiv:2506.02985 [math.CO], 2025. See p. 13.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan numbers, The Fibonacci Quart. 38 (2000) 408-19.
- P. J. Larcombe and D. R. French, The Catalan number k-fold self-convolution identity: the original formulation, Journal of Combinatorial Mathematics and Combinatorial Computing 46 (2003) 191-204.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 12.
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees
- J. Noonan and D. Zeilberger, The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns, arXiv:math/9808080 [math.CO], 1998; Also Adv. in Appl. Math. 17 (1996), no. 4, 381--407. MR1422065 (97j:05003).
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
- J. M. Pallo, Enumerating, Ranking and Unranking Binary Trees, The Computer Journal, Volume 29, Issue 2, 1986, Pages 171-175.
- R. Pemantle and M. C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., 50 (2008), no. 2, 199-272. See p. 264.
- A. Reifegerste, On the diagram of 132-avoiding permutations, arXiv:math/0208006 [math.CO], 2002.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- Yuriy Shablya, Dmitry Kruchinin and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
- A. Umar, Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra Disc. Math. 9 (2010) 115-126.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
- S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
Crossrefs
Programs
-
Haskell
a033184 n k = a033184_tabl !! (n-1) !! (k-1) a033184_row n = a033184_tabl !! (n-1) a033184_tabl = map reverse a009766_tabl -- Reinhard Zumkeller, Feb 19 2014
-
Magma
/* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
-
Maple
a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10); # Uses function PMatrix from A357368. Adds row and column for n, k = 0. PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
-
Mathematica
nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *) Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *) T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
-
PARI
T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
-
Sage
# The simplest way to construct the triangle. def A033184_triangle(n) : T = [0 for i in (0..n)] for k in (1..n) : T[k] = 1 for i in range(k-1,0,-1) : T[i] = T[i-1] + T[i+1] print([T[i] for i in (1..k)]) A033184_triangle(10) # Peter Luschny, Jan 27 2012
Formula
Column k is the k-fold convolution of column 1. The triangle is also defined recursively by (i) entries outside triangle are 0, (ii) top left entry is 1, (iii) every other entry is sum of its east and northwest neighbor. - David Callan, Jul 25 2005
G.f.: t*x*c/(1-t*x*c), where c=(1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n+1,k+1) = C(2*n-k, n-k)*(k+1)/(n+1). - Paul D. Hanna, Aug 11 2008
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*T(r+k,r), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} (k*A000108(k-1)*T(n-k-1,m-2)), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = C(2*n-k-1,n-k) - C(2*n-k-1,n-k-1). - Dennis P. Walsh, Mar 19 2012
T(n,k) = C(2*n-k,n)*k/(2*n-k). - Dennis P. Walsh, Mar 19 2012
T(n,k) = T(n,k-1) - T(n-1,k-2). - Dennis P. Walsh, Mar 19 2012
G.f.: 2*x*y / (1 + sqrt(1 - 4*x) - 2*x*y) = Sum_{n >= k > 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016
Comments