cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033994 a(n) = n*(n+1)*(5*n+1)/6.

Original entry on oeis.org

2, 11, 32, 70, 130, 217, 336, 492, 690, 935, 1232, 1586, 2002, 2485, 3040, 3672, 4386, 5187, 6080, 7070, 8162, 9361, 10672, 12100, 13650, 15327, 17136, 19082, 21170, 23405, 25792, 28336, 31042, 33915, 36960, 40182, 43586, 47177, 50960, 54940
Offset: 1

Views

Author

Barry E. Williams, Dec 16 1999

Keywords

Comments

Partial sums of A005476.
a(n) is the dot product of the vectors of the first n positive integers and the next n integers. - Michel Marcus, Sep 02 2020

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    a:=List([1..40],n->n*(n+1)*(5*n+1)/6);; Print(a); # Muniru A Asiru, Jan 01 2019
  • Magma
    [n*(n+1)*(5*n+1)/6 : n in [1..40]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    [n*(n+1)*(5*n+1)/6$n=1..40]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[Range[x].Range[x+1,2x],{x,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,11,32,70},40] (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n) = n*(n+1)*(5*n+1)/6;
    

Formula

G.f.: x*(2+3*x)/(1-x)^4.
a(n) = A132121(n,1). - Reinhard Zumkeller, Aug 12 2007
a(n) = A000292(n) + A002412(n) = A000330(n) + A002411(n). - Omar E. Pol, Jan 11 2013
a(n) = Sum_{i=1..n} Sum_{j=1..n} i+min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = Sum_{i=1..n} i*(n+i). - Charlie Marion, Apr 10 2013
Sum_{n>=1} 1/a(n) = 36 - 3*Pi*5^(3/4)*phi^(3/2)/4 - 15*sqrt(5)*log(phi)/4 - 75*log(5)/8 = 0.66131826232008423794478..., where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 01 2018
E.g.f.: exp(x)*x*(12 + 21*x + 5*x^2)/6. - Stefano Spezia, Feb 21 2024

Extensions

More terms from James Sellers, Jan 19 2000