cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A051690 a(n) = (5*n+9)(!^5)/9(!^5), related to A034301 ((5*n+2)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 14, 266, 6384, 185136, 6294624, 245490336, 10801574784, 529277164416, 28580966878464, 1686277045829376, 107921730933080064, 7446599434382524416, 551048358144306806784, 43532820293400237735936, 3656756904645619969818624, 325451364513460177313857536
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(14/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(14/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1-5*x)^(14/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+9)(!^5))/9(!^5) = A034301(n+2)/9.
E.g.f.: 1/(1-5*x)^(14/5).

A008546 Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).

Original entry on oeis.org

1, 4, 36, 504, 9576, 229824, 6664896, 226606464, 8837652096, 388856692224, 19053977918976, 1028914807624704, 60705973649857536, 3885182313590882304, 268077579637770878976, 19837740893195045044224, 1567181530562408558493696, 131643248567242318913470464
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 5*k+4 )); # G. C. Greubel, Aug 20 2019
  • Magma
    [1] cat [(&*[5*k+4: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    f:= n-> product(5*k+4, k=0..n-1);
  • Mathematica
    FoldList[Times, 1, 5Range[0, 20] + 4] (* Vincenzo Librandi, Jun 10 2013 *)
    CoefficientList[Series[(1 - 5x)^(-4/5), {x, 0, 20}], x] Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    Table[5^n Pochhammer[4/5, n], {n, 0, 20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    vector(20, n, n--; prod(j=0,n-1, 5*j+4) ) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [5^n*rising_factorial(4/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 4*A034301(n) = (5*n - 1)(!^5), n >= 1, with a(0) = 1.
a(n) = A011801(n + 1, 1) (first column of triangle).
a(n) ~ (sqrt(2*Pi)/Gamma(4/5))*n^(n + 3/10)*(5/e)^n*(1 + 1/(300*n) + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1 - 4*x/(1 - 5*x/(1 - 9*x/(1 - 10*x/(1 - 14*x/(1 - 15*x/(1 - 19*x/(1 - 20*x/(1 - 24*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k = 0..n} 5^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x where Q(k) = 1 - x*(5*k - 1)/(1 - x*(5*k + 5)/Q(k + 1) ); (continued fraction); e.g.f. (1 - 5*x)^(-4/5). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1/x - G(0)/(2*x), where G(k) = 1 + 1/(1 - x*(5*k - 1)/(x*(5*k - 1) + 1/G(k + 1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 5^n * Gamma(n + 4/5) / Gamma(4/5). - Vaclav Kotesovec, Jan 28 2015
a(n) + (-5*n + 1)*a(n - 1) = 0. - R. J. Mathar, Sep 04 2016
G.f.: 1/(1 - 4*x - 20*x^2/(1 - 14*x - 90*x^2/(1 - 24*x - 210*x^2/(1 - 34*x - 380*x^2/(1 - 44*x - 600*x^2/(1 - 54*x - 870*x^2/(1 - ...))))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 29 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5)^(1/5)*(Gamma(4/5) - Gamma(4/5, 1/5)). - Amiram Eldar, Dec 19 2022

A034300 a(n) = n-th quintic factorial number divided by 3.

Original entry on oeis.org

1, 8, 104, 1872, 43056, 1205568, 39783744, 1511782272, 65006637696, 3120318609408, 165376886298624, 9591859405320192, 604287142535172096, 41091525692391702528, 2999681375544594284544, 233975147292478354194432, 19419937225275703398137856, 1708954475824261899036131328
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..25], n-> Product([1..n], k-> 5*k-2)/3 ); # G. C. Greubel, Aug 23 2019
  • Magma
    [(&*[5*k-2: k in [1..n]])/3: n in [1..25]]; // G. C. Greubel, Aug 23 2019
    
  • Maple
    a:= n-> mul(5*k-2, k=1..n)/3; seq(a(n), n=1..25); # G. C. Greubel, Aug 23 2019
  • Mathematica
    Table[Product[5j-2,{j,n}],{n,20}]*1/3 (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    a(n) = prod(k=1,n, 5*k-2)/3;
    vector(25, n, a(n)) \\ G. C. Greubel, Aug 23 2019
    
  • Sage
    [5^n*rising_factorial(3/5, n)/3 for n in (1..25)] # G. C. Greubel, Aug 23 2019
    

Formula

3*a(n) = (5*n-2)(!^5) = Product_{j=1..n} (5*j-2) = A047056(n).
E.g.f.: (1-5*x)^(-3/5)/3.
a(n) ~ sqrt(2*Pi) * 5/(3*Gamma(3/5)) * n^(11/10) * (5*n/e)^n * (1 + (169/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = 5^n * Pochhammer(3/5, n)/3. - G. C. Greubel, Aug 23 2019
D-finite with recurrence: a(n) +(-5*n+2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
Sum_{n>=1} 1/a(n) = 3*(e/5^2)^(1/5)*(Gamma(3/5) - Gamma(3/5, 1/5)). - Amiram Eldar, Dec 19 2022

Extensions

Terms a(17) onward added by G. C. Greubel, Aug 23 2019

A034323 a(n) = n-th quintic factorial number divided by 2.

Original entry on oeis.org

1, 7, 84, 1428, 31416, 848232, 27143424, 1004306688, 42180880896, 1982501402112, 103090072909824, 5876134155859968, 364320317663318016, 24409461283442307072, 1757481212407846109184, 135326053355404150407168, 11096736375143140333387776, 965416064637453209004736512
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(5*n-3)*a[n-1]; od; a; # G. C. Greubel, Feb 10 2019
  • Magma
    [(&*[5*j-3: j in [1..n]])/2: n in [1..20]]; // G. C. Greubel, Feb 10 2019
    
  • Maple
    f:= gfun:-rectoproc({a(n)=(5*n-3)*a(n-1),a(1)=1},a(n),remember):
    map(f, [$1..40]); # Robert Israel, Feb 10 2019
  • Mathematica
    Table[Product[5j-3,{j,n}]/2,{n,20}] (* Harvey P. Dale, Nov 25 2013 *)
  • PARI
    vector(20, n, prod(j=1, n, 5*j-3)/2) \\ G. C. Greubel, Feb 10 2019
    
  • Sage
    [product(5*j-3 for j in (1..n))/2 for n in (1..20)] # G. C. Greubel, Feb 10 2019
    

Formula

2*a(n) = (5*n-3)(!^5) = Product_{j=1..n} (5*j-3).
E.g.f.: (-1 + (1-5*x)^(-2/5))/2, with a(0) = 0.
a(n) ~ sqrt(2*Pi) * 5/(2*Gamma(2/5)) * n^(9/10) * (5*n/e)^n * (1 + (109/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence a(n) = (5*n-3)*a(n-1). - Robert Israel, Feb 10 2019
From Amiram Eldar, Dec 19 2022: (Start)
a(n) = A047055(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/5^3)^(1/5)*(Gamma(2/5) - Gamma(2/5, 1/5)). (End)

A034325 a(n) is the n-th quintic factorial number divided by 5.

Original entry on oeis.org

1, 10, 150, 3000, 75000, 2250000, 78750000, 3150000000, 141750000000, 7087500000000, 389812500000000, 23388750000000000, 1520268750000000000, 106418812500000000000, 7981410937500000000000, 638512875000000000000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> 5^(n-1)*Factorial(n) ); # G. C. Greubel, Aug 23 2019
  • Magma
    [5^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 23 2019
    
  • Maple
    seq(5^(n-1)*n!, n=1..20); # G. C. Greubel, Aug 23 2019
  • Mathematica
    Array[5^(# - 1) #! &, 16] (* Michael De Vlieger, May 30 2019 *)
  • PARI
    vector(20, n, 5^(n-1)*n!) \\ G. C. Greubel, Aug 23 2019
    
  • Sage
    [5^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 23 2019
    

Formula

5*a(n) = (5*n)(!^5) = Product_{j=1..n} 5*j = 5^(n-1)*n!.
E.g.f.: (-1 + (1-5*x)^(-1))/5, a(0) = 0.
D-finite with recurrence: a(n) - 5*n*a(n-1) = 0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 5*(exp(1/5)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*(1-exp(-1/5)). (End)

A035277 One eighth of deca-factorial numbers.

Original entry on oeis.org

1, 18, 504, 19152, 919296, 53319168, 3625703424, 282804867072, 24886828302336, 2438909173628928, 263402190751924224, 31081458508727058432, 3978426689117063479296, 549022883098154760142848, 81255386698526904501141504, 12838351098367250911180357632
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([1..n], j-> 10*j-2)/8 ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[10*j-2: j in [1..n]])/8: n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(10*j-2, j=1..n)/8, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[10^n*Pochhammer[4/5, n]/8, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(20, n, prod(j=1,n, 10*j-2)/8 ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (10*j-2) for j in (1..n))/8 for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = (Pochhammer(8/10,n)*10^n)/8.
8*a(n) = (10*n-2)(!^10) = Product_{j=1..n} (10*j-2).
a(n) = 2^(n+2)*A034301(n) where 4*A034301(n) = (5*n-1)(!^5).
E.g.f.: (-1 + (1-10*x)^(-4/5))/8.
Sum_{n>=1} 1/a(n) = 8*(e/10^2)^(1/10)*(Gamma(4/5) - Gamma(4/5, 1/10)). - Amiram Eldar, Dec 22 2022

A051687 a(n) = (5*n+6)(!^5)/6, related to A008548 ((5*n+1)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 11, 176, 3696, 96096, 2978976, 107243136, 4396968576, 202260554496, 10315288279296, 577656143640576, 35237024762075136, 2325643634296958976, 165120698035084087296, 12549173050666390634496
Offset: 0

Views

Author

Keywords

Comments

Row m=6 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(11/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(11/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(11/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+6)(!^5))/6(!^5).
E.g.f.: 1/(1-5*x)^(11/5).

A051691 a(n) = (5*n+10)(!^5)/10(!^5), related to A052562 ((5*n)(!^5) quintic, or 5-factorials).

Original entry on oeis.org

1, 15, 300, 7500, 225000, 7875000, 315000000, 14175000000, 708750000000, 38981250000000, 2338875000000000, 152026875000000000, 10641881250000000000, 798141093750000000000, 63851287500000000000000
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(6; m,n) := ((5*n+m)(!^5))/m(!^5), m >= 0, n >= 0.

Crossrefs

Cf. A052562, A008548(n+1), A034323(n+1), A034300(n+1), A034301(n+1), A034325(n+1), A051687-A051691 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(15/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(15/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(15/5))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((5*n+10)(!^5))/10(!^5) = A052562(n+2)/(5*10).
E.g.f.: 1/(1-5*x)^3.

A025750 5th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 10, 150, 2625, 49875, 997500, 20662500, 439078125, 9513359375, 209293906250, 4661546093750, 104884787109375, 2380077861328125, 54401779687500000, 1251240932812500000, 28934946571289062500, 672311993862304687500, 15687279856787109375000, 367412607172119140625000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(6-(1-25x)^(1/5))/5,{x,0,20}],x] (* Harvey P. Dale, Dec 06 2012 *)
    a[0] = 1; a[n_] := ((-5)^(n - 1)*Sum[5^(n - k)*StirlingS1[n, k], {k, 1, n}])/n!; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 19 2013, after Vladimir Kruchinin *)
    a[n_] := 25^(n-1) * Pochhammer[4/5, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=if n=0 then 1 else (sum((-1)^(n-k-1)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i),i,j,n-k+j-1),j,0,k),k,0,n-1))/(n); /* Vladimir Kruchinin, Dec 10 2011 */
    
  • Maxima
    a(n):=if n=0 then 1 else -binomial(1/5,n)*(-25)^n/5; /* Tani Akinari, Sep 17 2015 */

Formula

G.f.: (6-(1-25*x)^(1/5))/5.
a(n) = 5^(n-1)*4*A034301(n-1)/n!, n >= 2, where 4*A034301(n-1) = (5*n-6)(!^5) = Product_{j=2..n} (5*j-6). - Wolfdieter Lang
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n+k-1,n-1) * Sum_{j=0..k} 2^j*binomial(k,j) * Sum_{i=j..n-k+j-1} binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i)/n, n > 0, a(0) = 1. - Vladimir Kruchinin, Dec 10 2011
a(n) = ((-5)^(n-1)*Sum_{k=1..n} (5)^(n-k)*stirling1(n,k))/n!, n>0, a(0) = 1. - Vladimir Kruchinin, Mar 19 2013
From Karol A. Penson, Feb 05 2025: (Start)
a(n) without the initial 1 (i.e., a(n) for n >= 1) is given by
a(n+1) = 5^(2*n)*gamma(n + 4/5)/(gamma(4/5)*(n + 1)!), n >= 0.
a(n+1) = Integral_{x=0..25} x^n*W(x) dx, n >= 0,
where W(x) = sin(Pi/5)*5^(2/5)*(1 - x/25)^(1/5)/(5*Pi*x^(1/5)). W(x) is a positive function on x = (0, 25), is singular at x = 0 with the singularity (x)^(-1/5), and it goes to zero at x = 25. (End)
a(n) ~ 25^(n-1) / (Gamma(4/5) * n^(6/5)). - Amiram Eldar, Aug 20 2025

A049223 A convolution triangle of numbers obtained from A025750.

Original entry on oeis.org

1, 10, 1, 150, 20, 1, 2625, 400, 30, 1, 49875, 8250, 750, 40, 1, 997500, 174750, 17875, 1200, 50, 1, 20662500, 3780000, 419625, 32500, 1750, 60, 1, 439078125, 83128125, 9810000, 839500, 53125, 2400, 70, 1, 9513359375, 1852500000, 229359375
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A025750(n); a(n,1)= 5^(n-1)*4*A034301(n-1)/n!, n >= 2. G.f. for m-th column: ((1-(1-25*x)^(1/5))/5)^m.

Crossrefs

Cf. A048966, A049213. Row sums = A025758.

Programs

  • Maxima
    T(n,m):=(m*sum((-1)^(n-m-3*k)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-m-3*(k-j)-i)*5^(3*(k-j)+i),i,j,n-m-k+j),j,0,k),k,0,n-m))/n; /* Vladimir Kruchinin, Dec 10 2011 */

Formula

a(n, m) = 5*(5*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
T(n,m) = (m*sum(k=0..n-m, (-1)^(n-m-3*k)*binomial(n+k-1,n-1)*sum(j=0..k, 2^j*binomial(k,j)*sum(i=j..n-m-k+j, binomial(j,i-j)*binomial(k-j,n-m-3*(k-j)-i)*5^(3*(k-j)+i)))))/n. - Vladimir Kruchinin, Dec 10 2011
Showing 1-10 of 14 results. Next