cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036765 Number of ordered rooted trees with n non-root nodes and all outdegrees <= three.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 104, 309, 939, 2905, 9118, 28964, 92940, 300808, 980864, 3219205, 10626023, 35252867, 117485454, 393133485, 1320357501, 4449298136, 15038769672, 50973266380, 173214422068, 589998043276, 2014026871496, 6889055189032, 23608722350440
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck n-paths that avoid UUUU. For example, a(4)=13 counts all 14 Dyck 4-paths except UUUUDDDD. - David Callan, Dec 09 2004
Number of restricted growth strings for Dyck paths with at most 2 consecutive rises (this is equivalent to the comment above, see example). - Joerg Arndt, Oct 31 2012
Let A(x) be the g.f. for the sequence of numbers of Dyck words with at most k consecutive ones (paths with at most k consecutive up-steps 'U', Restricted Growth Strings with at most k-1 consecutive rises), then B(x) := x*A(x) is the series reversion of x/(1+x+x^2+...+x^k). - Joerg Arndt, Oct 31 2012
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 3 children. - Geoffrey Critzer, Jan 05 2013
a(n) = number of noncrossing partitions of [n] in which all blocks are of size <= 3. - David Callan, Aug 27 2014

Examples

			a(4) = 13 since the top row of M^4 = (13, 8, 4, 1, 1).
From _Joerg Arndt_, Oct 31 2012: (Start)
a(5)=36 because there are 36 Dyck words of length 5 that avoid "1111":
[ #]      RGS                rises         Dyck word
[ 1]    [ . . . . . ]     [ . . . . . ]    1.1.1.1.1.
[ 2]    [ . . . . 1 ]     [ . . . . 1 ]    1.1.1.11..
[ 3]    [ . . . 1 . ]     [ . . . 1 . ]    1.1.11..1.
[ 4]    [ . . . 1 1 ]     [ . . . 1 . ]    1.1.11.1..
[ 5]    [ . . . 1 2 ]     [ . . . 1 2 ]    1.1.111...
[ 6]    [ . . 1 . . ]     [ . . 1 . . ]    1.11..1.1.
[ 7]    [ . . 1 . 1 ]     [ . . 1 . 1 ]    1.11..11..
[ 8]    [ . . 1 1 . ]     [ . . 1 . . ]    1.11.1..1.
[ 9]    [ . . 1 1 1 ]     [ . . 1 . . ]    1.11.1.1..
[10]    [ . . 1 1 2 ]     [ . . 1 . 1 ]    1.11.11...
[11]    [ . . 1 2 . ]     [ . . 1 2 . ]    1.111...1.
[12]    [ . . 1 2 1 ]     [ . . 1 2 . ]    1.111..1..
[13]    [ . . 1 2 2 ]     [ . . 1 2 . ]    1.111.1...
[--]    [ . . 1 2 3 ]     [ . . 1 2 3 ]    1.1111....
[14]    [ . 1 . . . ]     [ . 1 . . . ]    11..1.1.1.
[15]    [ . 1 . . 1 ]     [ . 1 . . 1 ]    11..1.11..
[16]    [ . 1 . 1 . ]     [ . 1 . 1 . ]    11..11..1.
[17]    [ . 1 . 1 1 ]     [ . 1 . 1 . ]    11..11.1..
[18]    [ . 1 . 1 2 ]     [ . 1 . 1 2 ]    11..111...
[19]    [ . 1 1 . . ]     [ . 1 . . . ]    11.1..1.1.
[20]    [ . 1 1 . 1 ]     [ . 1 . . 1 ]    11.1..11..
[21]    [ . 1 1 1 . ]     [ . 1 . . . ]    11.1.1..1.
[22]    [ . 1 1 1 1 ]     [ . 1 . . . ]    11.1.1.1..
[23]    [ . 1 1 1 2 ]     [ . 1 . . 1 ]    11.1.11...
[24]    [ . 1 1 2 . ]     [ . 1 . 1 . ]    11.11...1.
[25]    [ . 1 1 2 1 ]     [ . 1 . 1 . ]    11.11..1..
[26]    [ . 1 1 2 2 ]     [ . 1 . 1 . ]    11.11.1...
[27]    [ . 1 1 2 3 ]     [ . 1 . 1 2 ]    11.111....
[28]    [ . 1 2 . . ]     [ . 1 2 . . ]    111...1.1.
[29]    [ . 1 2 . 1 ]     [ . 1 2 . 1 ]    111...11..
[30]    [ . 1 2 1 . ]     [ . 1 2 . . ]    111..1..1.
[31]    [ . 1 2 1 1 ]     [ . 1 2 . . ]    111..1.1..
[32]    [ . 1 2 1 2 ]     [ . 1 2 . 1 ]    111..11...
[33]    [ . 1 2 2 . ]     [ . 1 2 . . ]    111.1...1.
[34]    [ . 1 2 2 1 ]     [ . 1 2 . . ]    111.1..1..
[35]    [ . 1 2 2 2 ]     [ . 1 2 . . ]    111.1.1...
[36]    [ . 1 2 2 3 ]     [ . 1 2 . 1 ]    111.11....
[--]    [ . 1 2 3 . ]     [ . 1 2 3 . ]    1111....1.
[--]    [ . 1 2 3 1 ]     [ . 1 2 3 . ]    1111...1..
[--]    [ . 1 2 3 2 ]     [ . 1 2 3 . ]    1111..1...
[--]    [ . 1 2 3 3 ]     [ . 1 2 3 . ]    1111.1....
[--]    [ . 1 2 3 4 ]     [ . 1 2 3 4 ]    11111.....
(Dots are used for zeros for readability.)
(End)
		

Crossrefs

Right hand column of triangle A064580. The sequence of sequences A000007 (0^n), A000012 (constant 1), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=3 of A288942.

Programs

  • Magma
    [&+[Binomial(n+1, n-2*k)*Binomial(n+1, k)/(n+1): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Oct 16 2018
  • Maple
    r := 3; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(3, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    InverseSeries[Series[y/(1+y+y^2+y^3), {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 11 2000 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
    Table[HypergeometricPFQ[{-n-1, (1-n)/2, -n/2}, {1, 3/2}, -1], {n, 0, 28}] (* Vladimir Reshetnikov, Oct 15 2018 *)
  • PARI
    {a(n)=sum(j=0,n\2,binomial(n+1, n-2*j)*binomial(n+1,j))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A+(x*A)^2+(x*A)^3);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A+x*O(x^n))^j)*(1-x*A)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,m-1,binomial(m-1,k)*binomial(m,k)*x^k)/(1-x)^(2*m)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,n,binomial(m+k-1,k)*binomial(m+k,k)*x^k)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    Vec(serreverse(x/(1+x+x^2+x^3)+O(x^66))/x) /* Joerg Arndt, Jun 10 2011 */
    

Formula

a(n) = (1/(n+1))*Sum_{j=0..floor(n/2)} binomial(n+1, n-2*j)*binomial(n+1, j). G.f. A(z) satisfies A=1+z*A+(z*A)^2+(z*A)^3. - Emeric Deutsch, Nov 29 2003
G.f.: F(x)/x where F(x) is the reversion of x/(1+x+x^2+x^3). - Joerg Arndt, Jun 10 2011
From Paul D. Hanna, Feb 13 2011: (Start)
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2*x^k*A(x)^k) * x^n/n ).
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k)*(1-x*A(x))^(2*n+1)* x^n/n ). (End)
From Paul D. Hanna, Feb 24 2011: (Start)
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k=0..n-1} C(n-1,k)*C(n,k)*x^k)/(1-x)^(2*n) * x^(2*n)/n ).
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k>=0} C(n+k-1,k)*C(n+k,k)*x^k) * x^(2*n)/n ). (End)
Let M = an infinite quadradiagonal matrix with all 1's in every diagonal: (sub, main, super, and super-super), and the rest zeros. V = vector [1,0,0,0,...]. The sequence = left column terms of M*V iterates. - Gary W. Adamson, Jun 06 2011
An infinite square production matrix M for the sequence is:
1, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
2, 1, 0, 1, 0, 0, ...
3, 2, 1, 0, 1, 0, ...
4, 3, 2, 1, 0, 1, ...
5, 4, 3, 2, 1, 0, ...
..., such that a(n) is the top left term of M^n. - Gary W. Adamson, Feb 21 2012
D-finite with recurrence: 2*(n+1)*(2*n+3)*(13*n-1)*a(n) = (143*n^3 + 132*n^2 - 17*n - 18)*a(n-1) + 4*(n-1)*(26*n^2 + 11*n - 6)*a(n-2) + 16*(n-2)*(n-1)*(13*n + 12)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/12*((6371+624*sqrt(78))^(2/3)+11*(6371+624*sqrt(78))^(1/3)+217)/(6371+624*sqrt(78))^(1/3) = 3.610718613276... is the root of the equation -16-8*d-11*d^2+4*d^3=0 and c = sqrt(f/Pi) = 0.9102276936417..., where f = 1/9984*(9295 + (13*(45085576939 - 795629568*sqrt(78)))^(1/3) + (13*(45085576939 + 795629568*sqrt(78)))^(1/3)) is the root of the equation -128+1696*f-9295*f^2+3328*f^3=0. - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
The coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/2)} binomial(n + r,k)*binomial(n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A005725(n)*x^n/n), where A005725(n) = Sum_{k = 0..floor(n/2)} binomial(n,k)*binomial(n,n - 2*k). Cf. A186241, A198951, A200731. (End)
a(n) = hypergeom([-n-1, (1-n)/2, -n/2], [1, 3/2], -1). - Vladimir Reshetnikov, Oct 15 2018

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017