A038040 a(n) = n*d(n), where d(n) = number of divisors of n (A000005).
1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118
Offset: 1
Examples
For n = 6 the partitions of 6 into equal parts are [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - _Omar E. Pol_, May 08 2021
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 162.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- J. Bourgain, S. V. Konyagin and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithms, Int. Math. Res. Notices, 2008 (2008), Art. ID rnn 090, 1-29.
- Jean Bourgain, Sergei Konyagin and Igor Shparlinski. Distribution on elements of cosets of small subgroups and applications, arXiv:1103.0567 [math.NT], Mar 2 2011.
- Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022).
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147. [Broken link?]
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147.
Crossrefs
Programs
-
Haskell
a038040 n = a000005 n * n -- Reinhard Zumkeller, Jan 21 2014
-
Maple
with(numtheory): A038040 := n->tau(n)*n;
-
Mathematica
a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
-
MuPAD
n*numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
-
PARI
a(n)=if(n<1,0,direuler(p=2,n,1/(1-p*X)^2)[n])
-
PARI
a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(x^k-1)^2,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
-
PARI
a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020
-
Python
from sympy import divisor_count as d def a(n): return n*d(n) print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022
-
SageMath
[n*sigma(n,0) for n in range(1, 60)] # Stefano Spezia, Jul 20 2025
Formula
Dirichlet g.f.: zeta(s-1)^2.
G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001
Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001
Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007
a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013
L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020
a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021
a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022
Sum_{k=1..n} a(k) ~ n^2*log(n)/2 + (gamma - 1/4)*n^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 25 2022
Mobius transform of A060640. - R. J. Mathar, Feb 07 2023
Comments