cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A090974 Duplicate of A038606.

Original entry on oeis.org

0, 1, 5, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235
Offset: 0

Views

Author

Keywords

Comments

With offset 1: Index j of prime p(j) such that ceiling[p(j)/j]=n is first satisfied for n >= 2. a(n) = A038606(n) = A062742(n) = A038624(n) for n >= 3. [From Jaroslav Krizek, Dec 13 2009]

A038624 Values of pi(x) where x exceeds n * pi(x).

Original entry on oeis.org

1, 1, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361
Offset: 1

Views

Author

Keywords

Comments

"Exceeds" can be interpreted as ">" or ">=" since the corresponding primes are never multiples of their indices. - R. J. Mathar, Jun 08 2008
Equivalently, a(n) = minimal k such that prime(k)/k >= n. - Enoch Haga, Oct 19 2007
a(n) = A062742(n) = A038606(n) for n >= 3. - Jaroslav Krizek, Dec 13 2009

Examples

			x exceeds 3*pi(x) when pi(x)=12, so a(3)=12
		

Crossrefs

Essentially the same as A062742.
Cf. A038606 (variant).

Programs

  • Mathematica
    Join[{k = 1}, Table[While[Prime[k]/k < n, k++]; k, {n, 2, 18}]] (* Jayanta Basu, Jul 10 2013 *)

Extensions

a(24)-a(28) from Robert G. Wilson v, Sep 26 2005
Edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar.
a(29)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A038607 a(n) is the smallest prime number k such that k > n*pi(k), where pi(k) denotes the prime counting function.

Original entry on oeis.org

2, 11, 37, 127, 347, 1087, 3109, 8419, 24317, 64553, 175211, 480881, 1304707, 3523901, 9558533, 25874843, 70115473, 189961529, 514272533, 1394193607, 3779851091, 10246935679, 27788566133, 75370121191, 204475052401, 554805820711, 1505578023841, 4086199302113, 11091501631019, 30109570413007
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998

Keywords

Comments

a(n) is about exp(n+1+1/(n+1)). - Charles R Greathouse IV, Sep 05 2011

Examples

			For n=1, a(1) = 2, since 2 > 1*pi(2) = 1*1. - _N. J. A. Sloane_, Dec 09 2020
For n=3, the 12th prime (37) is the first one satisfying p(k) > 3k.
		

Crossrefs

Programs

  • Mathematica
    k = 1; Do[ While[ Prime[k] < n*k, k++ ]; Print[Prime[k]], {n, 1, 25} ]
  • PARI
    k=1;n=1;forprime(p=3,4e9,if(p/n++>k,print1(p", ");k++)) \\ Charles R Greathouse IV, Sep 06 2011

Formula

a(n) = prime(A038606(n)) = A000040(A038606(n)).

Extensions

Extended by Robert G. Wilson v and Ray Chandler, Dec 01 2004
a(26)-a(30) from Charles R Greathouse IV, Sep 05 2011, Sep 06 2011
a(31)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A062742 Index j of prime p(j) such that floor(p(j)/j) = n is first satisfied.

Original entry on oeis.org

2, 1, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361
Offset: 1

Views

Author

Labos Elemer, Jul 12 2001

Keywords

Examples

			The q(j)=p(j)/j quotient when the value 14 first appears: {j=251706, p(j)=3523841, q(j)=13.9998291} {251707, 3523901, 14.0000119} {251708, 3523903, 13.9999642} {251709, 3523921, 13.9999801} {251710, 3523957, 14.0000675} {251711, 3523963, 14.0000357}
		

Crossrefs

Essentially the same as A038624.
Cf. A038606. - R. J. Mathar, Jan 30 2009

Programs

  • PARI
    {a062742(m)=local(n,j); for(n=1,m,j=1; while(floor(prime(j)/j)!=n,j++); print1(j,","))} a062742(10^7)

Formula

a(n) = Min_{j| floor(p(j)/j) = n}. Note that neither p(j)/j nor floor(p(j)/j) is monotonic.
a(n) = pi(A062743(n)).
a(n) = A038606(n) = A038624(n) for n >= 3. - Jaroslav Krizek, Dec 13 2009

Extensions

More terms from Jason Earls, May 15 2002
a(17)-a(28) from Farideh Firoozbakht and Robert G. Wilson v, Sep 13 2005
a(29)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A090973 a(n) = ceiling(prime(n)/n).

Original entry on oeis.org

2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Amarnath Murthy, Jan 04 2004

Keywords

Examples

			a(12) = 4 as pi(48) = 15 > 12 > pi(36) = 11.
		

Crossrefs

Cf. A068901. - Reinhard Zumkeller, Aug 16 2009

Programs

  • Magma
    [Ceiling(NthPrime(n)/n): n in [1..120]]; // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Table[Ceiling[Prime[n]/n], {n, 1, 120}] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    vector(120, n, ceil(prime(n)/n)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    [ceil(nth_prime(n)/n) for n in (1..120)] # G. C. Greubel, Feb 02 2019

Formula

For n > 1, a(n) = A038605(n)+1. - David Wasserman, Feb 23 2006
a(A038606(n)) = n+1. - Reinhard Zumkeller, Aug 16 2009

Extensions

More terms from David Wasserman, Feb 23 2006

A245071 a(n) = 12n - prime(n).

Original entry on oeis.org

10, 21, 31, 41, 49, 59, 67, 77, 85, 91, 101, 107, 115, 125, 133, 139, 145, 155, 161, 169, 179, 185, 193, 199, 203, 211, 221, 229, 239, 247, 245, 253, 259, 269, 271, 281, 287, 293, 301, 307, 313, 323, 325, 335, 343, 353, 353, 353, 361, 371, 379, 385, 395, 397, 403, 409, 415, 425
Offset: 1

Views

Author

Freimut Marschner, Jul 21 2014

Keywords

Comments

Prime(n) > n for n > 0. Let prime(n) = k*n with k as an even integer constant, for example, k = 12; then a(n) = k*n - prime(n) is a sequence of odd integers that are positive as long as k*n > prime(n). This is the case up to a(40072) = 11. If k*n < prime(n) then a(n) < 0, a(40073) = -5 up to a(40083) = -5. From a(40084) = 5 up to a(40121) = 5, a(n) > 0 again, but a(n) < 0 for n >= 40122. For k = 12 the table shows this result compared with floor(prime(n)/n) and (prime(n) mod n) <= (prime(n+1) mod (n+1)) for n >= 1. Observations:
(1) If k > floor(prime(n)/n) then a(n) is positive.
(2) If k <= floor(prime(n)/n) and (prime(n) mod n) < (prime(n+1) mod (n+1)) and n > 1 then a(n) is negative.
(3) If k <= floor(prime(n)/n) and (prime(n) mod n) > (prime(n+1) mod (n+1)) then a(n) is positive.
.
n prime(n) floor(prime(n)/n) (prime(n) mod n) a(n)
40072 480853 12 5 11
40073 480881 12 23 -5
40083 481001 11 40079 -5
40084 481003 11 40074 5
40121 481447 12 5 5
40122 481469 12 13 -5

Examples

			a(3) = 12*3 - prime(3) = 36 - 5 = 31.
		

Crossrefs

A000040 (prime(n)), A038605 (floor(prime(n)/n)), A004648 (prime(n) mod n), A038606 (Least k such that k-th prime > n * k), A038607 (the smallest prime number k such that k > n*pi(k)), A102281 (the largest number m such that m = pi(n*m)).

Programs

  • Mathematica
    Table[12n - Prime[n], {n, 60}] (* Alonso del Arte, Jul 27 2014 *)
  • PARI
    vector(133, n, 12*n-prime(n) )

Formula

a(n) = 12*n - prime(n).
Showing 1-6 of 6 results.