A090974 Duplicate of A038606.
0, 1, 5, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
x exceeds 3*pi(x) when pi(x)=12, so a(3)=12
Join[{k = 1}, Table[While[Prime[k]/k < n, k++]; k, {n, 2, 18}]] (* Jayanta Basu, Jul 10 2013 *)
For n=1, a(1) = 2, since 2 > 1*pi(2) = 1*1. - _N. J. A. Sloane_, Dec 09 2020 For n=3, the 12th prime (37) is the first one satisfying p(k) > 3k.
k = 1; Do[ While[ Prime[k] < n*k, k++ ]; Print[Prime[k]], {n, 1, 25} ]
k=1;n=1;forprime(p=3,4e9,if(p/n++>k,print1(p", ");k++)) \\ Charles R Greathouse IV, Sep 06 2011
The q(j)=p(j)/j quotient when the value 14 first appears: {j=251706, p(j)=3523841, q(j)=13.9998291} {251707, 3523901, 14.0000119} {251708, 3523903, 13.9999642} {251709, 3523921, 13.9999801} {251710, 3523957, 14.0000675} {251711, 3523963, 14.0000357}
{a062742(m)=local(n,j); for(n=1,m,j=1; while(floor(prime(j)/j)!=n,j++); print1(j,","))} a062742(10^7)
a(12) = 4 as pi(48) = 15 > 12 > pi(36) = 11.
[Ceiling(NthPrime(n)/n): n in [1..120]]; // G. C. Greubel, Feb 02 2019
Table[Ceiling[Prime[n]/n], {n, 1, 120}] (* G. C. Greubel, Feb 02 2019 *)
vector(120, n, ceil(prime(n)/n)) \\ G. C. Greubel, Feb 02 2019
[ceil(nth_prime(n)/n) for n in (1..120)] # G. C. Greubel, Feb 02 2019
a(3) = 12*3 - prime(3) = 36 - 5 = 31.
Table[12n - Prime[n], {n, 60}] (* Alonso del Arte, Jul 27 2014 *)
vector(133, n, 12*n-prime(n) )
Comments