cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038624 Values of pi(x) where x exceeds n * pi(x).

Original entry on oeis.org

1, 1, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361
Offset: 1

Views

Author

Keywords

Comments

"Exceeds" can be interpreted as ">" or ">=" since the corresponding primes are never multiples of their indices. - R. J. Mathar, Jun 08 2008
Equivalently, a(n) = minimal k such that prime(k)/k >= n. - Enoch Haga, Oct 19 2007
a(n) = A062742(n) = A038606(n) for n >= 3. - Jaroslav Krizek, Dec 13 2009

Examples

			x exceeds 3*pi(x) when pi(x)=12, so a(3)=12
		

Crossrefs

Essentially the same as A062742.
Cf. A038606 (variant).

Programs

  • Mathematica
    Join[{k = 1}, Table[While[Prime[k]/k < n, k++]; k, {n, 2, 18}]] (* Jayanta Basu, Jul 10 2013 *)

Extensions

a(24)-a(28) from Robert G. Wilson v, Sep 26 2005
Edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar.
a(29)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A038606 Least k such that k-th prime > n * k.

Original entry on oeis.org

1, 5, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361, 382465573483, 1003652347100
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net) 1998 Jul

Keywords

Comments

Log(a(n)) =~ -1.295 + 0.964312n. - Robert G. Wilson v, Jan 25 2002
Numbers n such that prime(n) (mod n) begins the next cycle of terms in A004648. Generally prime(i) (mod i) exceeds prime(i-1) (mod i-1) but there are numerous times where for a short run prime(i) (mod i) is minimally less than its predecessor. Here n is substantially less. See Labos's graph.
A090973(a(n)) = n+1. [From Reinhard Zumkeller, Aug 16 2009]
With offset 2: Index j of prime p(j) such that ceiling[p(j)/j]=n is first satisfied. a(n) = A062742(n) = A038624(n) for n >= 3. [From Jaroslav Krizek, Dec 13 2009]

Crossrefs

Programs

  • Maple
    A038606 := proc(n)
        for k from 1 do
            if ithprime(k)> n*k then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Aug 24 2013
  • Mathematica
    k = 1; Do[ While[ Floor[ Prime[k]/k] < n, k++ ]; Print[k]; k++, {n, 1, 30} ]
  • PARI
    k=1;n=1;forprime(p=3,4e9,if(p/n++>k,print1(n", ");k++)) \\ Charles R Greathouse IV, Sep 06 2011

Formula

a(n) = pi(A038607(n)) = A000720(A038607(n)).

Extensions

Edited by Robert G. Wilson v, Jan 25 2002
a(21)=179992909 corrected by Ray Chandler, Dec 01 2004
a(29)-a(30) from Charles R Greathouse IV, Sep 06 2011
a(31)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A062743 Smallest prime prime(m) such that floor(prime(m)/m) = n.

Original entry on oeis.org

3, 2, 37, 127, 347, 1087, 3109, 8419, 24317, 64553, 175211, 480881, 1304707, 3523901, 9558533, 25874843, 70115473, 189961529, 514272533, 1394193607, 3779851091, 10246935679, 27788566133, 75370121191, 204475052401
Offset: 1

Views

Author

Labos Elemer, Jul 12 2001

Keywords

Comments

a(n+1)/a(n) -> e as n -> infinity, as do the m's.

Crossrefs

Essentially the same as A038623.

Programs

  • Mathematica
    Do[ k = 1; While[ Floor[ Prime[m]/ m] != n, m++ ]; Print[Prime[k] ], {n, 1, 27} ]

Formula

A062742(n) = pi(a(n)).

Extensions

More terms from Robert G. Wilson v, Jul 13 2001
a(27) from Farideh Firoozbakht, Sep 12 2005
Corrected by T. D. Noe, Nov 14 2006
a(30)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A062357 a(n) = n*p(n+1)-(n+1)*p(n) = n*d(n)-p(n), where p(n) is the n-th prime and d(n) is the n-th prime-difference, A001223(n).

Original entry on oeis.org

-1, 1, 1, 9, -1, 11, -3, 13, 31, -9, 35, 11, -15, 13, 43, 43, -25, 47, 9, -31, 53, 9, 55, 103, 3, -49, 5, -51, 7, 307, -3, 61, -71, 201, -79, 65, 65, -11, 67, 67, -97, 239, -105, -17, -107, 353, 353, -31, -129, -29, 73, -135, 289, 73, 73, 73, -155, 77, -41, -161, 327, 575, -55, -183, -53, 607, 71, 343, -209, -69, 73, 217
Offset: 1

Views

Author

Labos Elemer, Jul 13 2001

Keywords

Comments

A sequence based on the solution of the equation: 1+(1+n)*prime(n)/x-n*prime(n+1)/x=0 for x. This is an irrational rotation-like sequence: the sequence is similar to a Beatty sequence. - Roger L. Bagula, Jun 06 2002

Examples

			n = 10: a(10) = 10*31-11*29 = 310-319 = -9;
n = 54: a(54) = 54*257-55*251 = 13878-13805 = 73;
n = 55: a(55) = 55*263-56*257 = 14465-14392 = 73; consecutive terms are often equal to each other.
		

Crossrefs

Programs

  • Magma
    [n*NthPrime(n + 1) - (n + 1)*NthPrime(n): n in [1..75]]; // Vincenzo Librandi, Jun 29 2018
  • Maple
    seq(n*ithprime(n+1)-(n+1)*ithprime(n),n=1..80); # Muniru A Asiru, Jun 29 2018
  • Mathematica
    Table[(Prime[w+1]-Prime[w])*w-Prime[w], {w, 1, 1024}]
  • PARI
    a(n)={n*prime(n + 1) - (n + 1)*prime(n)} \\ Harry J. Smith, Aug 06 2009
    

Formula

a(n) = n*A000040(n+1) - (n+1)*A000040(n) = n*A001223(n) - A000040(n).

A072916 Number of m such that floor(prime(m)/m) = n.

Original entry on oeis.org

3, 8, 19, 41, 117, 254, 616, 1642, 3766, 9461, 24183, 60252, 151368, 385600, 979844, 2507393, 6428977, 16513542, 42642649, 110283280, 285776799, 742428731, 1932223170, 5038580446, 13159683245, 34423463648, 90173540312
Offset: 1

Views

Author

Zak Seidov Aug 11 2002

Keywords

Examples

			Only m = 2,3,4 give [p(m)/m] = 1, so a(1) = 3.
There are 8 values of m giving floor(prime(m)/m) = 2, namely m = 1,5,6,7,8,9,10,11, so a(2) = 8.
		

Crossrefs

Programs

  • Mathematica
    a(n_) := Length[Cases[Table[Floor[Prime[m]/m], {m, 1, 1000000}], n]]

Extensions

a(16)-a(27) from Farideh Firoozbakht, Sep 13 2005
Typo corrected by David W. Wilson, Oct 22 2005

A090974 Duplicate of A038606.

Original entry on oeis.org

0, 1, 5, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235
Offset: 0

Views

Author

Keywords

Comments

With offset 1: Index j of prime p(j) such that ceiling[p(j)/j]=n is first satisfied for n >= 2. a(n) = A038606(n) = A062742(n) = A038624(n) for n >= 3. [From Jaroslav Krizek, Dec 13 2009]
Showing 1-6 of 6 results.