A057809 Numbers k such that pi(k) divides k.
2, 4, 6, 8, 27, 30, 33, 96, 100, 120, 330, 335, 340, 350, 355, 360, 1008, 1080, 1092, 1116, 1122, 1128, 1134, 3059, 3066, 3073, 3080, 3087, 3094, 8408, 8424, 8440, 8456, 8464, 8472, 23526, 23535, 24300, 64540, 64580, 64610, 64620, 64650, 64690, 64700
Offset: 1
Keywords
Examples
120 is a member as there are exactly 30 primes less than 120 and 30 * 4 = 120.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1161 (first 296 terms from Charles R Greathouse IV)
- Konstantinos N. Gaitanas, An explicit formula for the prime counting function, arXiv preprint arXiv:1311.1398 [math.NT], 2013.
- S. W. Golomb, On the Ratio of N to π(N), The American Mathematical Monthly 69.1 (1962): 36-37.
Programs
-
Magma
[n: n in [2..10^5] | n mod #PrimesUpTo(n) eq 0]; // Vincenzo Librandi, Jul 04 2016
-
Maple
select(t -> t mod numtheory:-pi(t) = 0, [$2..10^5]); # Robert Israel, Jul 03 2016
-
Mathematica
Select[ Range[2, 10^5], IntegerQ[ # / PrimePi[ # ]] & ] Select[Range[1000], Divisible[#, PrimePi[#]] &] (* Requires version 6.0+. Alonso del Arte, May 24 2015 *)
-
PARI
is(n)=n%primepi(n)==0 \\ Charles R Greathouse IV, Sep 14 2015
Extensions
More terms from James Sellers, Nov 08 2000
a(297)-a(1161) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Aug 31 2018
Comments