cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A038627 Number of solutions x to n * pi(x) = x, where pi(x) = number of primes <= x.

Original entry on oeis.org

0, 4, 3, 3, 6, 7, 6, 6, 3, 9, 1, 18, 11, 12, 21, 3, 10, 33, 31, 32, 24, 8, 13, 32, 35, 4, 15, 9, 15, 26, 22, 24, 9, 3, 14, 55, 36, 3, 65, 52, 33, 139, 42, 2, 85, 25, 7, 96, 16, 33
Offset: 1

Views

Author

Keywords

Comments

Equivalently, a(n) is number of solutions x to the equation pi(n*x) = x. - Farideh Firoozbakht, Jan 09 2005 [For example, a(2) = 4 because 1, 2, 3 & 4 are all solutions of pi(2*x) = x and a(11) = 1 because 15927 is the only solution of the equation pi(11*x) = x.]
S. W. Golomb proved that a(n) > 0 for each integer n > 1. - Carlo Sanna, Nov 09 2015

Examples

			11*pi(x) = x has only 1 solution, so a(11) = 1.
		

Crossrefs

Programs

  • Mathematica
    (* Assumes upper and lower bounds are as defined in A038626. *)
    xmin = .5; xmax = 2;
    Join[{0},Table[c = 0; x = Floor[2.4*xmin]; x1 = 2.7*xmax + 7;
      xmin = Infinity; xmax = 0; While[x <= x1,
       If[x == PrimePi[n x], c++; xmin = Min[x, xmin];
    xmax = Max[x, xmax]]; x++]; c, {n, 2, 15}]] (* Robert Price, Mar 28 2020 *)

Extensions

One more term from Labos Elemer, Sep 05 2003
a(24)-a(26) from Labos Elemer, Sep 12 2003
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
a(27)-a(29) from David Radcliffe, Sep 10 2014
a(29) corrected and a(30)-a(50) obtained from the A038625 values computed by Jan Büthe. - Giovanni Resta, Aug 31 2018

A038626 Smallest positive integer m such that m = pi(n*m) = A000720(n*m).

Original entry on oeis.org

1, 9, 24, 66, 168, 437, 1051, 2614, 6454, 15927, 40071, 100346, 251706, 637197, 1617172, 4124436, 10553399, 27066969, 69709679, 179992838, 465769802, 1208198523, 3140421715, 8179002095, 21338685402, 55762149023, 145935689357, 382465573481, 1003652347080, 2636913002890, 6935812012540
Offset: 2

Views

Author

Keywords

Comments

Golomb shows that solutions exist for each n>1.
For all known terms, we have 2.4*a(n) < a(n+1) < 2.7*a(n) + 7. A038627(n) gives number of natural solutions of the equation m = pi(n*m). - Farideh Firoozbakht, Jan 09 2005
a(n) grows as exp(n)/n. Thus, a(n+1)/a(n) tends to e=exp(1) as n grows. - Max Alekseyev, Oct 15 2017

Examples

			pi(3059) = 437 and 3059/437 = 7, so a(7)=437.
		

Crossrefs

Formula

a(n) = limit of f^(k)(1) as k grows, where f(x)=A000720(n*x). Also, a(n) = f^(A293529(n))(1). - Max Alekseyev, Oct 11 2017
a(n) = A038625(n) / n. - Max Alekseyev, Oct 13 2023

Extensions

a(24) from Farideh Firoozbakht, Jan 09 2005
Edited by N. J. A. Sloane at the suggestion of Chris K. Caldwell, Apr 08 2008
a(25)-a(32) from Max Alekseyev, Jul 18 2011, Oct 14 2017
a(33)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Aug 31 2018

A087237 a(n) = (Max{x : n*pi(x) = x} - Min{x : n*pi(x) = x})/n = A087236(n)/n.

Original entry on oeis.org

3, 2, 6, 6, 21, 5, 8, 86, 18, 0, 50, 17, 55, 143, 2, 269, 454, 308, 286, 335, 36, 338, 219, 113, 4, 92, 36, 72, 296, 296, 327, 23, 2, 168, 658, 770, 90, 1274, 1454, 1514, 3259, 612, 6, 2896, 367, 15, 2011, 287, 1915
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Comments

a(n) is the difference between the largest and smallest solutions to n = x/pi(x), divided by n, where pi(x) = A000720(x).
Equivalently, a(n) is the difference between largest solution and smallest natural solution of the equation pi(n*x) = x. - Farideh Firoozbakht, Jan 09 2005 [Max Alekseyev observes that this is trivially equivalent to the first definition.]

Examples

			n=22: a(22) = (10246936436-10246935644)/22 = 792/22 = 36.
a(2) = 3 because 1, 2, 3 & 4 are all solutions of pi(2*x) = x and 4 - 1 = 3; a(11) = 0 because 15927 is the only solution of the equation pi(11*x) = x and 15927 - 15927 = 0. - _Farideh Firoozbakht_, Jan 09 2005
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[(Last@ #1 - First@ #1)/(First@ #2 + 1) &, Values@ Rest@ KeySort@ PositionIndex@ Table[n/PrimePi[n] /. k_ /; Not@ IntegerQ@ k -> 0, {n, 2, 10^6}]] (* Michael De Vlieger, Mar 25 2017, Version 10 *)

Formula

a(n) = A102281(n) - A038626(n). - Farideh Firoozbakht, Jan 09 2005

Extensions

Edited by N. J. A. Sloane, Oct 28 2008 at the suggestion of R. J. Mathar
24 additional terms from Jan Büthe, Jan 16 2015

A245071 a(n) = 12n - prime(n).

Original entry on oeis.org

10, 21, 31, 41, 49, 59, 67, 77, 85, 91, 101, 107, 115, 125, 133, 139, 145, 155, 161, 169, 179, 185, 193, 199, 203, 211, 221, 229, 239, 247, 245, 253, 259, 269, 271, 281, 287, 293, 301, 307, 313, 323, 325, 335, 343, 353, 353, 353, 361, 371, 379, 385, 395, 397, 403, 409, 415, 425
Offset: 1

Views

Author

Freimut Marschner, Jul 21 2014

Keywords

Comments

Prime(n) > n for n > 0. Let prime(n) = k*n with k as an even integer constant, for example, k = 12; then a(n) = k*n - prime(n) is a sequence of odd integers that are positive as long as k*n > prime(n). This is the case up to a(40072) = 11. If k*n < prime(n) then a(n) < 0, a(40073) = -5 up to a(40083) = -5. From a(40084) = 5 up to a(40121) = 5, a(n) > 0 again, but a(n) < 0 for n >= 40122. For k = 12 the table shows this result compared with floor(prime(n)/n) and (prime(n) mod n) <= (prime(n+1) mod (n+1)) for n >= 1. Observations:
(1) If k > floor(prime(n)/n) then a(n) is positive.
(2) If k <= floor(prime(n)/n) and (prime(n) mod n) < (prime(n+1) mod (n+1)) and n > 1 then a(n) is negative.
(3) If k <= floor(prime(n)/n) and (prime(n) mod n) > (prime(n+1) mod (n+1)) then a(n) is positive.
.
n prime(n) floor(prime(n)/n) (prime(n) mod n) a(n)
40072 480853 12 5 11
40073 480881 12 23 -5
40083 481001 11 40079 -5
40084 481003 11 40074 5
40121 481447 12 5 5
40122 481469 12 13 -5

Examples

			a(3) = 12*3 - prime(3) = 36 - 5 = 31.
		

Crossrefs

A000040 (prime(n)), A038605 (floor(prime(n)/n)), A004648 (prime(n) mod n), A038606 (Least k such that k-th prime > n * k), A038607 (the smallest prime number k such that k > n*pi(k)), A102281 (the largest number m such that m = pi(n*m)).

Programs

  • Mathematica
    Table[12n - Prime[n], {n, 60}] (* Alonso del Arte, Jul 27 2014 *)
  • PARI
    vector(133, n, 12*n-prime(n) )

Formula

a(n) = 12*n - prime(n).

A102279 Numbers n such that n = phi(d_1)!*phi(d_2)!* ... *phi(d_k)! where d_1 d_2 ... d_k is the decimal expansion of n and assume that phi(0)=0.

Original entry on oeis.org

1, 48, 720, 17280, 17915904000, 479219999055934390272000000000
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 08 2005

Keywords

Comments

All terms are of the form 2^i*3^j*5^t.
No more terms < 10^100. - David Wasserman, Apr 03 2008

Examples

			17280 is in the sequence because 17280 = phi(1)!*phi(7)!*phi(2)!*phi(8)!*phi(0)!.
		

Crossrefs

A245650 Primes in the sequence 12*n - prime(n), (A245071).

Original entry on oeis.org

31, 41, 59, 67, 101, 107, 139, 179, 193, 199, 211, 229, 239, 269, 271, 281, 293, 307, 313, 353, 353, 353, 379, 397, 409, 431, 439, 449, 449, 457, 467, 479, 491, 499, 509, 521, 547, 563, 599, 607, 617, 641, 659, 673, 709, 719, 739, 751, 761, 769, 809, 811, 821, 827, 859, 863, 881, 883, 911, 911, 919, 929
Offset: 1

Views

Author

Freimut Marschner, Jul 30 2014

Keywords

Comments

As the arithmetic derivative of prime numbers is [prime(n)]' = 1 the comparison of the first arithmetic derivative of (A245071)' = A245649 leads to a selection of 13.386 prime numbers out of 100.000, where some prime numbers are repeated. Remark: The sign of prime(n) here used is +, so prime(n) is distributed relative to 12 = floor(prime(n)/n).
Since 12*i - prime(i) < 0 for i > A102281(12) = 40121, this sequence is finite. It has 13386 members, with 1793 distinct primes, the largest being 16369 = a(4713). - Robert Israel, Jul 30 2014

Crossrefs

Programs

  • Maple
    A:=select(isprime, [seq(12*n - ithprime(n), n=1..40121)]); # Robert Israel, Jul 30 2014
  • PARI
    for(n=1,10^3,q=12*n-prime(n);if(isprime(q),print1(q,", "))) \\ Derek Orr, Jul 30 2014

Formula

a(n) is the n-th prime member of the sequence 12*i - prime(i). a(n) = prime(n) if (12*i - prime(i)) = prime(n).

A072916 Number of m such that floor(prime(m)/m) = n.

Original entry on oeis.org

3, 8, 19, 41, 117, 254, 616, 1642, 3766, 9461, 24183, 60252, 151368, 385600, 979844, 2507393, 6428977, 16513542, 42642649, 110283280, 285776799, 742428731, 1932223170, 5038580446, 13159683245, 34423463648, 90173540312
Offset: 1

Views

Author

Zak Seidov Aug 11 2002

Keywords

Examples

			Only m = 2,3,4 give [p(m)/m] = 1, so a(1) = 3.
There are 8 values of m giving floor(prime(m)/m) = 2, namely m = 1,5,6,7,8,9,10,11, so a(2) = 8.
		

Crossrefs

Programs

  • Mathematica
    a(n_) := Length[Cases[Table[Floor[Prime[m]/m], {m, 1, 1000000}], n]]

Extensions

a(16)-a(27) from Farideh Firoozbakht, Sep 13 2005
Typo corrected by David W. Wilson, Oct 22 2005

A364635 a(n) is the largest prime p such that p/PrimePi(p) < n.

Original entry on oeis.org

7, 31, 113, 359, 1129, 3089, 8467, 24281, 64717, 175141, 481447, 1304713, 3524621, 9560081, 25874773, 70119967, 189969349, 514282961, 1394199299, 3779856617, 10246936393, 27788573801, 75370126379, 204475055189, 554805820519, 1505578026059, 4086199303001, 11091501632977
Offset: 2

Views

Author

Jon E. Schoenfield, Sep 09 2023

Keywords

Comments

Sequence begins at a(2) because there exists no prime p such that p/PrimePi(p) < 1.

Examples

			a(4) = 113 because 113/PrimePi(113) = 113/30 = 3.766... but p/PrimePi(p) >= 4 for all primes > 113.
		

Crossrefs

Formula

a(n) = prime(A102281(n)). - Michel Marcus, Sep 10 2023
Showing 1-8 of 8 results.