cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A057810 Quotients n/pi(n) for n in A057809.

Original entry on oeis.org

2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2000

Keywords

Crossrefs

Programs

Extensions

More terms from Naohiro Nomoto, Jun 26 2001

A087241 Consecutive min and max-terms of solution-clusters of A057809, i,e, least and largest solutions to n=x/A000720[x].

Original entry on oeis.org

2, 8, 27, 33, 96, 120, 330, 360, 1008, 1134, 3059, 3094, 8408, 8472, 23526, 24300, 64540, 64720, 175197, 175197, 480852, 481452, 1304498, 1304719, 3523884, 3524654, 9557955, 9560100, 25874752, 25874784, 70115412, 70119985, 189961182, 189969354, 514272411, 514278263
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Crossrefs

Extensions

More terms from Giovanni Resta, Sep 01 2018

A071394 Numbers n divisible by pi(n) [A057809] with prime pi(n); i.e., largest prime factor of n equals pi(n).

Original entry on oeis.org

4, 6, 33, 335, 355, 3073, 8408, 64690, 481044, 1304693, 1304719, 3524318, 3524654, 9559785, 9559905, 70115803, 189963234, 189963918, 514278263, 1394194660, 3779856591, 10246935974, 75370122456, 204475052725, 204475053325, 1505578023783, 1505578024917
Offset: 1

Views

Author

Jason Earls, Jun 12 2002

Keywords

Examples

			pi(8408) = 1051 and 8408 = 2*2*2*1051.
		

Crossrefs

Programs

  • Mathematica
    c = 0; lpf[n_] := If[ PrimeQ[n], c++; n, Transpose[ FactorInteger[n]][[1, -1]]]; Do[ If[ lpf[n] == c, Print[n]], {n, 2, 10^7}]
    Select[Select[Range[2,10^6],IntegerQ[#/PrimePi[#]]&],PrimeQ[PrimePi[#]]&] (* Ivan N. Ianakiev, Apr 15 2015 *)
    Select[Range[10^6], FactorInteger[#][[-1, 1]] == PrimePi@ # &] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    isok(n) = isprime(p=primepi(n)) && !(n % p); \\ Michel Marcus, Jul 31 2017

Formula

A000720(a(n)) = A006530(a(n)) = A256394(n). - Jonathan Sondow, Apr 15 2015

Extensions

Edited and extended by Robert G. Wilson v, Jun 13 2002
More terms from Hans Havermann, Jul 02 2002
a(26)-a(27) from Giovanni Resta, Mar 28 2017

A087238 First differences of A057809.

Original entry on oeis.org

2, 2, 2, 19, 3, 3, 63, 4, 20, 210, 5, 5, 10, 5, 5, 648, 72, 12, 24, 6, 6, 6, 1925, 7, 7, 7, 7, 7, 5314, 16, 16, 16, 8, 8, 15054, 9, 765, 40240, 40, 30, 10, 30, 40, 10, 10, 10, 110477, 305655, 12, 144, 12, 12, 12, 12, 12, 12, 12, 204, 60, 12, 36, 12, 12, 12, 12, 823046, 13
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Examples

			Large differences arise between max term in a cluster and least one in the next cluster of A057809. While small entries obtained as differences inside a cluster.
E.g.:...,21,6467079011,198,22,110,132,22,242,66,17541629593,23,... shows by first differences the transition from the 21st cluster to 23rd solution-set over the 22nd-set with multiples of 22.
First cluster is empty, while 11th contains one term (see A038227).
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[2,1500000],Divisible[#,PrimePi[#]]&]] (* Harvey P. Dale, Aug 13 2012 *)

Formula

a(n)=A057809(n+1)-A057809(n)

A038625 a(n) is smallest number m such that m = n*pi(m), where pi(k) = number of primes <= k (A000720).

Original entry on oeis.org

2, 27, 96, 330, 1008, 3059, 8408, 23526, 64540, 175197, 480852, 1304498, 3523884, 9557955, 25874752, 70115412, 189961182, 514272411, 1394193580, 3779849598, 10246935644, 27788566029, 75370121160, 204475052375, 554805820452, 1505578023621, 4086199301996, 11091501630949
Offset: 2

Views

Author

Keywords

Comments

Golomb shows that solutions exist for each n>1.
Equivalently, for n > 1, least m such that m >= n*pi(m). - Eric M. Schmidt, Aug 05 2014
The values a(26),...,a(50) were calculated with the Eratosthenes sieve making use of strong bounds for pi(x), which follow from partial knowledge of the Riemann hypothesis, and the analytic method for calculating initial values of pi(x). - Jan Büthe, Jan 16 2015

Examples

			pi(3059) = 437 and 3059/437 = 7, so a(7)=3059.
		

Crossrefs

Programs

  • Maple
    with(numtheory); f:=proc(n) local i; for i from 2 to 10000 do if i mod pi(i) = 0 and i/pi(i) = n then RETURN(i); fi; od: RETURN(-1); end; # N. J. A. Sloane, Sep 01 2008
  • Mathematica
    t = {}; k = 2; Do[While[n*PrimePi[k] != k, k++]; AppendTo[t, k], {n, 2, 15}]; t (* Jayanta Basu, Jul 10 2013 *)
  • PARI
    a(n)=my(k=1); while(k!=n*primepi(k),k++); k;
    for (n=2, 20, print1(a(n), ", ")); \\ Derek Orr, Aug 13 2014
    
  • Python
    from math import exp
    from sympy import primepi
    def a(n):
      m = 2 if n == 2 else int(exp(n)) # pi(m) > m/log(m) for m >= 17
      while m != n*primepi(m): m += 1
      return m
    print([a(n) for n in range(2, 10)]) # Michael S. Branicky, Feb 27 2021

Formula

It appears that a(n) is asymptotic to e^2*exp(n). - Chris K. Caldwell, Apr 02 2008
a(n) = A038626(n) * n. - Max Alekseyev, Oct 13 2023

Extensions

Three more terms from Labos Elemer, Sep 12 2003
Edited by N. J. A. Sloane at the suggestion of Chris K. Caldwell, Apr 08 2008
24 terms added and entry a(26) corrected by Jan Büthe, Jan 07 2015

A065134 Remainder when n is divided by the number of primes not exceeding n.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 0, 1, 9, 0, 9, 10, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 5, 6, 7, 8, 9, 10, 8, 9, 7, 8, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 10, 11, 12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 18, 19, 17, 18, 19
Offset: 2

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Comments

Also remainder when the number of nonprimes is divided by the number of primes (not exceeding n).

Examples

			n = 2: Pi[2] = 1,Mod[1,1] = 0, the first term = a(2) = 0; n = 100: Pi[100] = 25, Mod[100,25] = 0 = a(100); n = 20: Pi[20] = 8, Mod[20,8] = 4 = a(20).
		

Crossrefs

Programs

  • Mathematica
    Table[Last@ QuotientRemainder[n, PrimePi[n]], {n, 2, 91}] (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    { for (n=2, 1000, write("b065134.txt", n, " ", n%primepi(n)) ) } \\ Harry J. Smith, Oct 11 2009

Formula

a(n) = n (mod pi(n)).

Extensions

Term a(1) removed so OFFSET changed from 1,5 to 2,4 by Harry J. Smith, Oct 11 2009
Since OFFSET is 2,4; Term a(1) removed and a(91) added by Harry J. Smith, Oct 11 2009

A087235 a(n) is the largest number in the set of solutions to n=x/pi(x), where pi(x)=A000720(x).

Original entry on oeis.org

8, 33, 120, 360, 1134, 3094, 8472, 24300, 64720, 175197, 481452, 1304719, 3524654, 9560100, 25874784, 70119985, 189969354, 514278263, 1394199300, 3779856633, 10246936436, 27788573803, 75370126416, 204475055200, 554805820556, 1505578026105, 4086199303004, 11091501633037
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Examples

			n=22: list of solutions = {10246935644, 10246935842, 10246935864, 10246935974, 10246936106, 10246936128, 10246936370, 10246936436}, so a(22)=10246936436.
		

Crossrefs

Formula

a(n) = Max{x; n*pi(x)=x}.

Extensions

More terms from David Radcliffe, Sep 10 2014
a(29) corrected and a(30)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

A076240 Remainder when 2nd order prime pp(n) = A006450(n) is divided by n-th prime = A000040(n).

Original entry on oeis.org

1, 2, 1, 3, 9, 2, 8, 10, 14, 22, 3, 9, 15, 19, 23, 29, 41, 39, 63, 69, 2, 6, 16, 16, 24, 42, 48, 52, 54, 52, 74, 84, 88, 102, 114, 122, 134, 152, 156, 166, 168, 1, 7, 13, 19, 23, 31, 71, 71, 73, 73, 65, 77, 91, 79, 91, 109, 115, 125, 137, 149, 155, 185, 197, 203, 197, 235
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Examples

			a(4) = 3 since prime(prime(4)) (mod prime(4)) = prime(7) (mod 7) = 17 (mod 7) = 3. - _Michael De Vlieger_, Mar 25 2017
		

Crossrefs

Programs

  • Maple
    a:= n-> (p-> irem(ithprime(p), p))(ithprime(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    Table[Mod @@ Map[Nest[Prime, n, #] &, {2, 1}], {n, 65}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n) = prime(prime(n)) % prime(n); \\ Michel Marcus, Mar 25 2017

Formula

a(n) = prime^2(n) mod prime(n) = A006450(n) mod A000040(n).

A087237 a(n) = (Max{x : n*pi(x) = x} - Min{x : n*pi(x) = x})/n = A087236(n)/n.

Original entry on oeis.org

3, 2, 6, 6, 21, 5, 8, 86, 18, 0, 50, 17, 55, 143, 2, 269, 454, 308, 286, 335, 36, 338, 219, 113, 4, 92, 36, 72, 296, 296, 327, 23, 2, 168, 658, 770, 90, 1274, 1454, 1514, 3259, 612, 6, 2896, 367, 15, 2011, 287, 1915
Offset: 2

Views

Author

Labos Elemer, Sep 04 2003

Keywords

Comments

a(n) is the difference between the largest and smallest solutions to n = x/pi(x), divided by n, where pi(x) = A000720(x).
Equivalently, a(n) is the difference between largest solution and smallest natural solution of the equation pi(n*x) = x. - Farideh Firoozbakht, Jan 09 2005 [Max Alekseyev observes that this is trivially equivalent to the first definition.]

Examples

			n=22: a(22) = (10246936436-10246935644)/22 = 792/22 = 36.
a(2) = 3 because 1, 2, 3 & 4 are all solutions of pi(2*x) = x and 4 - 1 = 3; a(11) = 0 because 15927 is the only solution of the equation pi(11*x) = x and 15927 - 15927 = 0. - _Farideh Firoozbakht_, Jan 09 2005
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[(Last@ #1 - First@ #1)/(First@ #2 + 1) &, Values@ Rest@ KeySort@ PositionIndex@ Table[n/PrimePi[n] /. k_ /; Not@ IntegerQ@ k -> 0, {n, 2, 10^6}]] (* Michael De Vlieger, Mar 25 2017, Version 10 *)

Formula

a(n) = A102281(n) - A038626(n). - Farideh Firoozbakht, Jan 09 2005

Extensions

Edited by N. J. A. Sloane, Oct 28 2008 at the suggestion of R. J. Mathar
24 additional terms from Jan Büthe, Jan 16 2015

A073436 Smallest k such that k mod pi(k) = n.

Original entry on oeis.org

2, 3, 5, 7, 16, 21, 22, 25, 26, 29, 32, 65, 66, 70, 77, 78, 82, 86, 87, 88, 92, 93, 94, 95, 99, 106, 116, 117, 118, 119, 218, 219, 220, 221, 222, 247, 248, 249, 250, 255, 256, 261, 262, 267, 268, 289, 290, 291, 292, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306
Offset: 0

Views

Author

Labos Elemer, Jul 31 2002

Keywords

Comments

a(n) > a(n-1) except for 68, 180, 1051, 6454, 6456, 6459, 40073, 40078, ..., . - Robert G. Wilson v, Feb 24 2023

Examples

			Remainder 7 appears first as 25 mod pi(25) = 25 mod 9 = 7, so a(7) = 25.
		

Crossrefs

Programs

Formula

a(n) = Min{k: k mod A000720(k) = n} = Min{k: A065134(k) = n}.

Extensions

a(0) from Robert G. Wilson v, Feb 23 2023
Showing 1-10 of 28 results. Next