A039623 a(n) = n^2*(n^2+3)/4.
1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Jean-Paul Delahaye, Le miraculeux "lemme de Burnside", pp. 145-6 in 'Pour la Science' (French edition of 'Scientific American'), No. 350, December 2006, Paris.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
-
Maple
A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
-
Mathematica
Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
-
PARI
Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
-
PARI
a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
Formula
From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
Extensions
More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016
Comments