A077420
Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.
Original entry on oeis.org
1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas Numbers, INTEGERS 6 (2006) #A15
- Tanya Khovanova, Recursive Sequences
- S. Vidhyalakshmi, V. Krithika, and K. Agalya, On The Negative Pell Equation y^2 = 72x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 2, February (2016).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
Cf. similar sequences listed in
A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in
A302329. This is the case k=3.
-
I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
LinearRecurrence[{34,-1},{1,33},20] (* Vincenzo Librandi, Nov 22 2011 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041027 *)
a[18, 20] (* Gerry Martens, Jun 07 2015 *)
-
makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14); /* _Bruno Berselli, Nov 22 2011 */
-
Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
A088317
a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.
Original entry on oeis.org
1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003
-
[n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
-
LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* Harvey P. Dale, May 07 2012 *)
-
a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
makelist(A088317(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
A088317=BinaryRecurrenceSequence(8,1,1,4)
[A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
A041026
Numerators of continued fraction convergents to sqrt(18).
Original entry on oeis.org
4, 17, 140, 577, 4756, 19601, 161564, 665857, 5488420, 22619537, 186444716, 768398401, 6333631924, 26102926097, 215157040700, 886731088897, 7309005751876, 30122754096401, 248291038523084
Offset: 0
-
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[18],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
Numerator[Convergents[Sqrt[18],20]] (* or *) LinearRecurrence[{0,34,0,-1},{4,17,140,577},20] (* Harvey P. Dale, Jun 12 2014 *)
a0[n_] := ((-4-3*Sqrt[2])/(17+12*Sqrt[2])^n+(-4+3*Sqrt[2])*(17+12*Sqrt[2])^n)/2 // Simplify
a1[n_] := (1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
A241021
Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.
Original entry on oeis.org
19, 199, 1999, 99991, 199999, 9999991, 19999999, 0, 9199999999, 99999199999, 991999999999, 9919999999999, 99999999991999, 919999999999999, 9999999999999199, 99919999999999999, 0, 9991999999999999999, 99999199999999999999, 0, 9991999999999999999999
Offset: 2
-
with(numtheory):nn:=80:T:=array(1..nn):
for n from 2 to nn do:
for i from 1 to n do:
T[i]:=9:
od:
ii:=0:
for j from 1 to n while(ii=0)do:
T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):
if type(s,prime)=true
then
ii:=1: printf(`%d, `,s):
else
T[j]:=9:
fi:
od:
if ii=0
then
printf(`%d, `,0):
else
fi:
od:
-
Table[SelectFirst[FromDigits/@Table[Insert[PadRight[{},k,9],1,n],{n,k+1}],PrimeQ],{k,30}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2017 *)
Showing 1-4 of 4 results.
Comments