cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077420 Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.

Original entry on oeis.org

1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

(3*a(n))^2 - 2*(2*b(n))^2 = 1 with companion sequence b(n)= A046176(n+1), n>=0 (special solutions of Pell equation).

Crossrefs

Cf. A056771 (even part).
Row 34 of array A094954.
Row 3 of array A188646.
Cf. similar sequences listed in A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. This is the case k=3.

Programs

  • Magma
    I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Mathematica
    LinearRecurrence[{34,-1},{1,33},20] (* Vincenzo Librandi, Nov 22 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041027 *)
    a[18, 20] (* Gerry Martens, Jun 07 2015 *)
  • Maxima
    makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14);  /* _Bruno Berselli, Nov 22 2011 */
  • PARI
    Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

a(n) = 34*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = T(2*n+1, 3)/3 = S(n, 34) - S(n-1, 34), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 34)= A029547(n), T(n, 3)=A001541(n).
G.f.: (1-x)/(1-34*x+x^2).
a(n) = sqrt(8*A046176(n+1)^2 + 1)/3.
a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(2*n)-a(n-1), where k = (sqrt(2)+1)^4 = 17+12*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
a(n) = a(-n-1) = A029547(n)-A029547(n-1) = ((1+sqrt(2))^(4n+2)+(1-sqrt(2))^(4n+2))/6. - Bruno Berselli, Nov 22 2011

A088317 a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.

Original entry on oeis.org

1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* Harvey P. Dale, May 07 2012 *)
  • Maxima
    a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
    makelist(A088317(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • SageMath
    A088317=BinaryRecurrenceSequence(8,1,1,4)
    [A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012

A041026 Numerators of continued fraction convergents to sqrt(18).

Original entry on oeis.org

4, 17, 140, 577, 4756, 19601, 161564, 665857, 5488420, 22619537, 186444716, 768398401, 6333631924, 26102926097, 215157040700, 886731088897, 7309005751876, 30122754096401, 248291038523084
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[18],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    Numerator[Convergents[Sqrt[18],20]] (* or *) LinearRecurrence[{0,34,0,-1},{4,17,140,577},20] (* Harvey P. Dale, Jun 12 2014 *)
    a0[n_] := ((-4-3*Sqrt[2])/(17+12*Sqrt[2])^n+(-4+3*Sqrt[2])*(17+12*Sqrt[2])^n)/2 // Simplify
    a1[n_] := (1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)

Formula

G.f.: (4+17*x+4*x^2-x^3)/(1-34*x^2+x^4). - Colin Barker, Jan 02 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((-4-3*sqrt(2))/(17+12*sqrt(2))^n+(-4+3*sqrt(2))*(17+12*sqrt(2))^n)/2.
a1(n) = (1/(17+12*sqrt(2))^n+(17+12*sqrt(2))^n)/2. (End)

A241021 Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.

Original entry on oeis.org

19, 199, 1999, 99991, 199999, 9999991, 19999999, 0, 9199999999, 99999199999, 991999999999, 9919999999999, 99999999991999, 919999999999999, 9999999999999199, 99919999999999999, 0, 9991999999999999999, 99999199999999999999, 0, 9991999999999999999999
Offset: 2

Views

Author

Michel Lagneau, Apr 15 2014

Keywords

Comments

The corresponding indices of the decimal digit 1 are 1, 1, 1, 5, 1, 7, 1, 0, 2, 6, 3, 3, 11, 2, 14, 4, 0, 4, 6, 0, 4, ... (A241018).

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=80:T:=array(1..nn):
       for n from 2 to nn do:
         for i from 1 to n do:
         T[i]:=9:
         od:
           ii:=0:
           for j from 1 to n while(ii=0)do:
           T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):
             if type(s,prime)=true
             then
             ii:=1: printf(`%d, `,s):
             else
             T[j]:=9:
             fi:
             od:
              if ii=0
               then
               printf(`%d, `,0):
               else
              fi:
         od:
  • Mathematica
    Table[SelectFirst[FromDigits/@Table[Insert[PadRight[{},k,9],1,n],{n,k+1}],PrimeQ],{k,30}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2017 *)
Showing 1-4 of 4 results.