cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A051841 Number of binary Lyndon words with an even number of 1's.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 48, 93, 165, 315, 576, 1091, 2032, 3855, 7252, 13797, 26163, 49929, 95232, 182361, 349350, 671088, 1290240, 2485504, 4792905, 9256395, 17894588, 34636833, 67106816, 130150493, 252641280, 490853403, 954429840, 1857283155, 3616800768, 7048151355, 13743869130, 26817356775
Offset: 1

Views

Author

Frank Ruskey, Dec 13 1999

Keywords

Comments

Also number of trace 0 irreducible polynomials over GF(2).
Also number of trace 0 Lyndon words over GF(2).

Examples

			a(5) = 3 = |{ 00011, 00101, 01111 }|.
		

References

  • May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019

Crossrefs

Same as A001037 - A000048. Same as A042980 + A042979.
Cf. A000010.

Programs

  • Haskell
    a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v)
                 ds $ reverse ds) `div` (2 * n) where ds = a027750_row n
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n);
    Table[a[n], {n, 1, 32}]
    (* Jean-François Alcover, May 14 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */
    

Formula

a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d).
a(n) ~ 2^(n-1) / n. - Vaclav Kotesovec, May 31 2019
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)

A042980 Number of degree-n irreducible polynomials over GF(2) with trace = 0 and subtrace = 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 6, 15, 24, 45, 85, 155, 288, 550, 1008, 1935, 3626, 6885, 13107, 24940, 47616, 91225, 174590, 335626, 645120, 1242600, 2396745, 4627915, 8947294, 17318945, 33552384, 65076240, 126320640, 245424829, 477218560, 928638035, 1808400384, 3524082400, 6871921458, 13408691175, 26178823218
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n,k]]}]/n;
    a[n_]:=Sum[ If[ Mod[n+k, 4]==2, L[n, k], 0], {k, 0, n}];
    Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jun 28 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%4==2, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */

Formula

a(n) = (1/n) * Sum_{ L(n, k) : n+k = 2 mod 4}, where L(n, k) = Sum_{ mu(d)*binomial(n/d, k/d): d|gcd(n, k)}.

A042982 Number of degree-n irreducible polynomials over GF(2) with trace = 1 and subtrace = 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 2, 5, 8, 13, 27, 45, 85, 160, 288, 550, 1024, 1920, 3654, 6885, 13107, 24989, 47616, 91225, 174760, 335462, 645435, 1242600, 2396745, 4628480, 8947294, 17318945, 33554432, 65074253, 126324495, 245424829, 477218560, 928645120, 1808400384, 3524082400, 6871947672, 13408665600, 26178873147
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n; a[n_] := Sum[ If[ Mod[n+k, 4] == 3, L[n, k], 0], {k, 0, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jun 28 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%4==3, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */

Formula

a(n) = (1/n) * Sum_{ L(n, k) : n+k = 3 mod 4}, where L(n, k) = Sum_{ mu(d)*binomial(n/d, k/d) : d|gcd(n, k)}.

A074027 Number of binary Lyndon words of length n with trace 0 and subtrace 0 over Z_2.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 5, 8, 15, 24, 45, 80, 155, 288, 550, 1024, 1935, 3626, 6885, 13056, 24940, 47616, 91225, 174760, 335626, 645120, 1242600, 2396160, 4627915, 8947294, 17318945, 33554432, 65076240, 126320640, 245424829, 477211280, 928638035, 1808400384, 3524082400
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 21 2002

Keywords

Comments

Same as the number of binary Lyndon words of length n with trace 0 and subtrace 0 over GF(2).

Examples

			a(6;0,0)=2 since the two binary Lyndon words of trace 0, subtrace 0 and length 6 are { 001111, 010111 }.
		

Crossrefs

Formula

a(2n) = A042979(2n), a(2n+1) = A042980(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.

Extensions

Terms a(33) onward from Max Alekseyev, Apr 09 2013

A074028 Number of binary Lyndon words of length n with trace 0 and subtrace 1 over Z_2.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 4, 6, 13, 24, 48, 85, 160, 288, 541, 1008, 1920, 3626, 6912, 13107, 24989, 47616, 91136, 174590, 335462, 645120, 1242904, 2396745, 4628480, 8947294, 17317888, 33552384, 65074253, 126320640, 245428574, 477218560, 928645120, 1808400384, 3524068955
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 21 2002

Keywords

Comments

Same as the number of binary Lyndon words of length n with trace 0 and subtrace 1 over GF(2).

Examples

			a(5;0,1)=2 since the two binary Lyndon words of trace 0, subtrace 1 and length 5 are { 00011, 00101 }.
		

Crossrefs

Formula

a(2n) = A042980(2n), a(2n+1) = A042979(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.

Extensions

Terms a(33) onward from Max Alekseyev, Apr 09 2013

A074029 Number of binary Lyndon words of length n with trace 1 and subtrace 0 over Z_2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 15, 27, 48, 85, 155, 288, 541, 1024, 1935, 3654, 6912, 13107, 24940, 47616, 91136, 174760, 335626, 645435, 1242904, 2396745, 4627915, 8947294, 17317888, 33554432, 65076240, 126324495, 245428574, 477218560, 928638035, 1808400384, 3524068955
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 21 2002

Keywords

Comments

Same as the number of binary Lyndon words of length n with trace 1 and subtrace 0 over GF(2).

Examples

			a(3;1,0)=1 since the one binary Lyndon word of trace 1, subtrace 0 and length 3 is { 001 }.
		

Crossrefs

Formula

a(2n) = A042982(2n), a(2n+1) = A049281(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.

Extensions

Terms a(33) onward from Max Alekseyev, Apr 09 2013

A074030 Number of binary Lyndon words of length n with trace 1 and subtrace 1 over Z_2.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 5, 8, 13, 24, 45, 85, 160, 297, 550, 1024, 1920, 3626, 6885, 13107, 24989, 47709, 91225, 174760, 335462, 645120, 1242600, 2396745, 4628480, 8948385, 17318945, 33554432, 65074253, 126320640, 245424829, 477218560, 928645120, 1808414181, 3524082400
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 21 2002

Keywords

Comments

Same as the number of binary Lyndon words of length n with trace 1 and subtrace 1 over GF(2).

Crossrefs

Formula

a(2n) = A042981(2n), a(2n+1) = A042982(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.

Extensions

Corrected by Franklin T. Adams-Watters, Oct 25 2006
Terms a(33) onward from Max Alekseyev, Apr 09 2013

A074032 Number of degree-n irreducible polynomials over GF(4) with trace 0 and subtrace 1.

Original entry on oeis.org

0, 0, 1, 4, 12, 40, 144, 512, 1813, 6528, 23808, 87380, 322560, 1198080, 4473647, 16777216, 63160320, 238605640, 904200192, 3435973836, 13089411609, 49977753600, 191219367936, 733007751680, 2814749599332, 10825959997440, 41699995927744, 160842843834660
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 26 2002

Keywords

Comments

Let a = RootOf( x^2+x+1 ) and b = 1+a. Same as number of degree-n irreducible polynomials over GF(4) with trace 0 and subtrace a. Same as number of degree-n irreducible polynomials over GF(4) with trace 0 and subtrace b.
Is this a duplicate of A074450? - R. J. Mathar, Dec 16 2020

Crossrefs

Formula

a(n) = A042979(2*n)/2 [discovered by Sequence Machine]. - Andrey Zabolotskiy, Oct 09 2021

Extensions

More terms from Ruskey's website added by Joerg Arndt, Jan 16 2011
Terms a(17) and beyond from Andrey Zabolotskiy, Dec 15 2020

A042981 Number of degree-n irreducible polynomials over GF(2) with trace = 1 and subtrace = 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 4, 8, 15, 24, 48, 85, 155, 297, 541, 1024, 1935, 3626, 6912, 13107, 24940, 47709, 91136, 174760, 335626, 645120, 1242904, 2396745, 4627915, 8948385, 17317888, 33554432, 65076240, 126320640, 245428574, 477218560, 928638035, 1808414181, 3524068955, 6871947672, 13408691175, 26178823218
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n;
    a[n_] := Sum[ If[ Mod[n+k, 4] == 1, L[n, k], 0], {k, 0, n}];
    Table[a[n], {n, 1, 32}]
    (* Jean-François Alcover, Jun 28 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%4==1, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */

Formula

a(n) = (1/n) * Sum_{ L(n, k) : n+k = 1 mod 4}, where L(n, k) = Sum_{ mu(d)*{binomial(n/d, k/d)} : d|gcd(n, k)}.

A053727 Triangle T(n,k) = Sum_{d|gcd(n,k)} mu(d)*C(n/d,k/d) (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 0, 3, 3, 0, 4, 4, 4, 0, 5, 10, 10, 5, 0, 6, 12, 18, 12, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 24, 56, 64, 56, 24, 8, 0, 9, 36, 81, 126, 126, 81, 36, 9, 0, 10, 40, 120, 200, 250, 200, 120, 40, 10, 0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 0, 12, 60
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2000

Keywords

Comments

Triangle of number of primitive words over {0,1} of length n that contain k 1's, for n,k >= 1. - Benoit Cloitre, Jun 08 2004

Examples

			Triangle begins
  1;
  2,  0;
  3,  3,  0;
  4,  4,  4,  0;
  5, 10, 10,  5,  0;
  6, 12, 18, 12,  6,  0;
  ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 29.

Crossrefs

Cf. A042979, A042980. T(2n, n), T(2n+1, n) match A007727, A001700, respectively. Row sums match A027375.
Same triangle as A050186 except this one does not include column 0.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[k, n], MoebiusMu[#] Binomial[n/#, k/#] &]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    T(n,k)=sumdiv(gcd(k,n),d,moebius(d)*binomial(n/d,k/d)) \\ Benoit Cloitre, Jun 08 2004
Showing 1-10 of 10 results.