A008296
Triangle of Lehmer-Comtet numbers of the first kind.
Original entry on oeis.org
1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800
Offset: 1
Triangle begins:
1;
1, 1;
-1, 3, 1;
2, -1, 6, 1;
-6, 0, 5, 10, 1;
24, 4, -15, 25, 15, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139.
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
- Tian-Xiao He and Yuanziyi Zhang, Centralizers of the Riordan Group, arXiv:2105.07262 [math.CO], 2021.
- D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
-
for n from 1 to 20 do for k from 1 to n do
printf(`%d,`, add(binomial(l,k)*k^(l-k)*Stirling1(n,l), l=k..n)) od: od:
# second program:
A008296 := proc(n, k) option remember; if k=1 and n>1 then (-1)^n*(n-2)! elif n=k then 1 else (n-1)*procname(n-2, k-1) + (k-n+1)*procname(n-1, k) + procname(n-1, k-1) end if end proc:
seq(print(seq(A008296(n, k), k=1..n)), n=1..7); # Mélika Tebni, Aug 22 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!;
a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1,k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]]
(* Jean-François Alcover, Apr 29 2011 *)
-
{T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */
-
# uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016
A354795
Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0
Triangle T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, -1, -3, 1]
[4] [0, -2, -1, -6, 1]
[5] [0, -6, 0, 5, -10, 1]
[6] [0, -24, 4, 15, 25, -15, 1]
[7] [0, -120, 28, 49, 35, 70, -21, 1]
[8] [0, -720, 188, 196, 49, 0, 154, -28, 1]
[9] [0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1]
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Cf.
A354794 (matrix inverse),
A176118 (row sums),
A005727 (alternating row sums),
A045406 (column 2),
A347276 (column 3),
A345651 (column 4),
A298511 (central),
A008296 (variant),
A159333,
A264428,
A159075,
A006963,
A354796.
-
# The function BellMatrix is defined in A264428.
cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
# Alternative:
t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
T := (n, k) -> (-1)^(n-k)*t(n, k):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
# Using the e.g.f.:
egf := (1 - x)^(t*(x - 1)):
ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
seq(print(row(n)), n = 0..9);
-
cfact[n_] := If[n == 0, 1, -(n - 1)!];
R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
Original entry on oeis.org
1, 10, 25, -35, 49, 0, -820, 9020, -87164, 859144, -8965320, 100136400, -1199838576, 15406135488, -211479420096, 3094582896000, -48129022468224, 793274283938304, -13818265424460288, 253731538514893824, -4899371564756837376, 99261476593521868800
Offset: 4
-
b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
(n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..28); # Alois P. Heinz, Aug 26 2021
# alternative
seq(A008296(n,4),n=4..70) ; # R. J. Mathar, Sep 15 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
a[n_, n_] = 1;
a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
Flatten[Table[N[a[n + 4, 4], 10], {n, 1, 400}]]
-
a(n) = sum(m=4, n, binomial(m, 4)*4^(m-4)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021
Original entry on oeis.org
1, 6, 5, -15, 49, -196, 944, -5340, 34716, -254760, 2078856, -18620784, 180973584, -1887504768, 20887922304, -242111586816, 2889841121280, -34586897978880, 393722260047360, -3659128846433280, 5687630494110720, 1137542166526464000, -49644151627682304000
Offset: 3
-
b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
(n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..30); # Alois P. Heinz, Aug 25 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
a[n_, n_] = 1;
a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
Flatten[Table[a[n + 3, 3], {n, 0, 30}]]
-
a(n) = sum(m=3, n, binomial(m, 3)*3^(m-3)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021
A323618
Expansion of e.g.f. (1 + x)*log(1 + x)*(2 + log(1 + x))/2.
Original entry on oeis.org
0, 1, 2, -1, 1, -1, -2, 34, -324, 2988, -28944, 300816, -3371040, 40710240, -528439680, 7348717440, -109109064960, 1723814265600, -28888702617600, 512030734387200, -9572240647065600, 188274945999974400, -3887144020408320000, 84062926436751360000, -1900475323780239360000
Offset: 0
-
[(&+[StirlingFirst(n,k)*Binomial(k+1,2): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
-
f:= gfun:-rectoproc({a(n) = (5-2*n)*a(n-1) - (n-3)^2*a(n-2), a(0)=0, a(1)=1, a(2)=2, a(3)=-1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 20 2019
-
nmax = 24; CoefficientList[Series[(1 + x) Log[1 + x] (2 + Log[1 + x])/2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k (k + 1)/2, {k, 0, n}], {n, 0, 24}]
Join[{0,1,2,-1}, RecurrenceTable[{a[n]==(5-2*n)*a[n-1]-(n-3)^2*a[n-2], a[2]==2, a[3]==-1}, a, {n,4,25}]] (* G. C. Greubel, Feb 07 2019 *)
-
{a(n) = sum(k=0,n, stirling(n,k,1)*binomial(k+1,2))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
-
[sum((-1)^(k+n)*stirling_number1(n,k)*binomial(k+1,2) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Feb 07 2019
A372803
Expansion of e.g.f. exp(1 - exp(-x)) * (exp(-x) - 1) * (exp(-x) - 2).
Original entry on oeis.org
0, 1, 3, -2, -11, 31, 14, -349, 1047, 820, -21265, 90355, -26352, -2086083, 14092615, -32449650, -241320287, 3080629195, -15455723498, -2456654665, 760213889483, -7097893818852, 28459679925187, 125560349169887, -3153253543188992, 26852335900600041, -86130449768002245
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 - Exp[-x]] (Exp[-x] - 1) (Exp[-x] - 2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) StirlingS2[n, k] k^2, {k, 0, n}], {n, 0, 26}]
Showing 1-6 of 6 results.
Comments