A172460 Partial sums of economical numbers A046759.
125, 253, 496, 752, 1095, 1607, 2232, 2961, 3985, 5014, 6229, 7479, 8759, 10090, 11459, 12917, 14453, 16134, 17835, 19550, 21342, 23191, 25066, 27114, 29301, 31498, 33707, 36108, 38668, 41477, 44602, 48083, 51667, 55312, 59033, 63129
Offset: 1
Examples
a(41) = 125 + 128 + 243 + 256 + 343 + 512 + 625 + 729 + 1024 + 1029 + 1215 + 1250 + 1280 + 1331 + 1369 + 1458 + 1536 + 1681 + 1701 + 1715 + 1792 + 1849 + 1875 + 2048 + 2187 + 2197 + 2209 + 2401 + 2560 + 2809 + 3125 + 3481 + 3584 + 3645 + 3721 + 4096 + 4374 + 4375 + 4489 + 4802 + 4913.
Formula
a(n) = SUM[i=1..n] {n written as a product of primes raised to powers, where D(n) = number of digits in product, l(n) = number of digits in n; sequence gives n such that D(n)
A055642 Number of digits in the decimal expansion of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0
Comments
From Hieronymus Fischer, Jun 08 2012: (Start)
For n > 0 the first differences of A117804.
The total number of digits necessary to write down all the numbers 0, 1, 2, ..., n is A117804(n+1). (End)
Here a(0) = 1, but a different common convention is to consider that the expansion of 0 in any base b > 0 has 0 terms and digits. - M. F. Hasler, Dec 07 2018
Examples
Examples: 999: 1 + floor(log_10(999)) = 1 + floor(2.x) = 1 + 2 = 3 or ceiling(log_10(999+1)) = ceiling(log_10(1000)) = ceiling(3) = 3; 1000: 1 + floor(log_10(1000)) = 1 + floor(3) = 1 + 3 = 4 or ceiling(log_10(1000+1)) = ceiling(log_10(1001)) = ceiling(3.x) = 4; 1001: 1 + floor(log_10(1001)) = 1 + floor(3.x) = 1 + 3 = 4 or ceiling(log_10(1001+1)) = ceiling(log_10(1002)) = ceiling(3.x) = 4;
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
a055642 :: Integer -> Int a055642 = length . show -- Reinhard Zumkeller, Feb 19 2012, Apr 26 2011
-
Magma
[ #Intseq(n): n in [0..105] ]; // Bruno Berselli, Jun 30 2011 (Common Lisp) (defun A055642 (n) (if (zerop n) 1 (floor (log n 10)))) ; James Spahlinger, Oct 13 2012
-
Maple
A055642 := proc(n) max(1,ilog10(n)+1) ; end proc: # R. J. Mathar, Nov 30 2011
-
Mathematica
Join[{1}, Array[ Floor[ Log[10, 10# ]] &, 104]] (* Robert G. Wilson v, Jan 04 2006 *) Join[{1},Table[IntegerLength[n],{n,104}]] IntegerLength[Range[0,120]] (* Harvey P. Dale, Jul 02 2016 *)
-
PARI
a(n)=#Str(n) \\ M. F. Hasler, Nov 17 2008
-
PARI
A055642(n)=logint(n+!n,10)+1 \\ Increasingly faster than the above, for larger n. (About twice as fast for n ~ 10^7.) - M. F. Hasler, Dec 07 2018
-
Python
def a(n): return len(str(n)) print([a(n) for n in range(121)]) # Michael S. Branicky, May 10 2022
-
Python
def A055642(n): # Faster than len(str(n)) from ~ 50 digits on L = math.log10(n or 1) if L.is_integer() and 10**int(L)>n: return int(L or 1) return int(L)+1 # M. F. Hasler, Apr 08 2024
Formula
a(A046760(n)) < A050252(A046760(n)); a(A046759(n)) > A050252(A046759(n)). - Reinhard Zumkeller, Jun 21 2011
a(n) = 1 + floor(log_10(n)) = 1 + A004216(n) = ceiling(log_10(n+1)) = A004218(n+1), if n >= 1. - Daniel Forgues, Mar 27 2014
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} x^(10^j). - Hieronymus Fischer, Jun 08 2012
a(n) = A262190(n) for n < 100; a(A262198(n)) != A262190(A262198(n)). - Reinhard Zumkeller, Sep 14 2015
A046758 Equidigital numbers.
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 135, 137, 139
Offset: 1
Comments
Write n as product of primes raised to powers, let D(n) = A050252 = total number of digits in product representation (number of digits in all the primes plus number of digits in all the exponents that are greater than 1) and l(n) = number of digits in n; sequence gives n such that D(n)=l(n).
The term "equidigital number" was coined by Recamán (1995). - Amiram Eldar, Mar 10 2024
Examples
For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence.
References
- Bernardo Recamán Santos, Equidigital representation: problem 2204, J. Rec. Math., Vol. 27, No. 1 (1995), pp. 58-59.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. P. Delahaye, "Primes Hunters", Economical and Prodigal Numbers (Text in French). [Wayback Machine link]
- R. G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Eric Weisstein's World of Mathematics, Equidigital Number..
- Wikipedia, Equidigital number.
Programs
-
Haskell
a046758 n = a046758_list !! (n-1) a046758_list = filter (\n -> a050252 n == a055642 n) [1..] -- Reinhard Zumkeller, Jun 21 2011
-
Mathematica
edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range[140], edQ]] (* Jayanta Basu, Jun 28 2013 *)
-
PARI
for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ Derek Orr, Jan 30 2015
-
Python
from itertools import count, islice from sympy import factorint def A046758_gen(): # generator of terms return (n for n in count(1) if n == 1 or len(str(n)) == sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items())) A046758_list = list(islice(A046758_gen(),20)) # Chai Wah Wu, Feb 18 2022
Formula
Extensions
More terms from Eric W. Weisstein
A046760 Wasteful numbers.
4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 108, 110, 114
Offset: 1
Comments
Write n as product of primes raised to powers, let D(n) = number of digits in product, l(n) = number of digits in n; sequence gives n such that D(n)>l(n).
Examples
For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a term of this sequence. [clarified by _Derek Orr_, Jan 30 2015]
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Delahaye, Les chasseurs de nombres premiers.
- R. G. E. Pinch, Economical numbers., arXiv:math/9802046 [math.NT], 1998.
- Eric Weisstein's World of Mathematics, Wasteful Number.
- Wikipedia, Extravagant number.
Programs
-
Haskell
a046760 n = a046760_list !! (n-1) a046760_list = filter (\n -> a050252 n > a055642 n) [1..] -- Reinhard Zumkeller, Aug 02 2013
-
Mathematica
Cases[Range[115], n_ /; Length[Flatten[IntegerDigits[FactorInteger[n] /. 1 -> Sequence[]]]] > Length[IntegerDigits[n]]] (* Jean-François Alcover, Mar 21 2011 *)
-
PARI
for(n=1,100,s="";F=factor(n);for(i=1,#F[,1],s=concat(s,Str(F[i,1]));s=concat(s,Str(F[i,2])));c=0;for(j=1,#F[,2],if(F[j,2]==1,c++));if(#digits(n)<#s-c,print1(n,", "))) \\ Derek Orr, Jan 30 2015
-
Python
from itertools import count, islice from sympy import factorint def A046760_gen(): # generator of terms return (n for n in count(1) if len(str(n)) < sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items())) A046760_list = list(islice(A046760_gen(),20)) # Chai Wah Wu, Feb 18 2022
A050252 Number of digits in the prime factorization of n (counting terms of the form p^1 as p).
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 3, 4
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Factorization.
Crossrefs
Programs
-
Haskell
a050252 1 = 1 a050252 n = sum $ map a055642 $ (a027748_row n) ++ (filter (> 1) $ a124010_row n) -- Reinhard Zumkeller, Aug 03 2013, Jun 21 2011
-
Mathematica
nd[n_]:=Total@IntegerLength@Select[Flatten@FactorInteger[n],#>1&];Table[If[n==1,1,nd[n]],{n,102}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
-
Python
from sympy import factorint def a(n): return 1 if n == 1 else sum(len(str(p))+(len(str(e)) if e>1 else 0) for p, e in factorint(n).items()) print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 27 2024
A254318 Hyper equidigital numbers.
2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 31, 32, 35, 36, 37, 39, 41, 43, 46, 47, 49, 50, 53, 54, 58, 59, 61, 64, 67, 69, 71, 72, 73, 79, 81, 83, 89, 92, 93, 97, 98, 100, 101, 103, 104, 105, 106, 107, 109, 113, 116, 119
Offset: 1
Comments
The distinction between the equidigital numbers (A046758) is that only the distinct digits are counted instead of all digits. Hence the definition:
Write n as product of primes raised to powers, let D(n) = total number of distinct digits in product representation (number of distinct digits in all the primes and number of distinct digits in all the exponents that are greater than 1) and nbd(n) = A043537(n) = number of distinct digits in n; sequence gives n such that D(n) = nbd(n).
Examples
116 is in the sequence because 116 = 2^2*29 => D(116)= A043537(116)=2.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Cases[Range[400], n_ /; Length[Union[Flatten[IntegerDigits[FactorInteger[n] /. 1 -> Sequence[]]]]]==Length[Union[Flatten[IntegerDigits[n]]]]]
-
PARI
for(n=1,100,s=[];F=factor(n);for(i=1,#F[,1],s=concat(s,digits(F[i,1]));if(F[i,2]>1,s=concat(s,digits(F[i,2]))));if(#vecsort(digits(n),,8)==#vecsort(s,,8),print1(n,", "))) \\ Derek Orr, Jan 30 2015
A379373 Numbers k such that A050252(k) <= A055642(k).
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 125, 127, 128, 129, 131, 133, 134, 135
Offset: 1
Comments
Examples
112 is a term because 112 = (2^4)*7; the total number of digits of (2, 4, 7) = 1 + 1 + 1 <= the number of digits of 112 (3). 125 is a term because 125 = 5^3; the total number of digits of (5, 3) = 1 + 1 <= the number of digits of 125 (3).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Giovanni Resta, Economical numbers, Numbers Aplenty, 2013.
Programs
-
Mathematica
A379373Q[k_] := Total[IntegerLength[Select[Flatten[FactorInteger[k]], # > 1 &]]] <= IntegerLength[k]; Select[Range[200], A379373Q]
-
Python
from sympy import factorint def ok(n): return n > 0 and sum(len(str(p))+(len(str(e)) if e>1 else 0) for p, e in factorint(n).items()) <= len(str(n)) print([k for k in range(136) if ok(k)]) # Michael S. Branicky, Dec 22 2024
A379537 Frugal numbers in base 2: numbers k such that A377369(k) < A070939(k).
1, 27, 32, 49, 64, 81, 121, 125, 128, 135, 147, 162, 169, 189, 192, 243, 250, 256, 289, 297, 320, 338, 343, 351, 361, 363, 375, 384, 405, 448, 486, 507, 512, 513, 529, 539, 567, 576, 578, 605, 621, 625, 637, 640, 648, 675, 686, 704, 722, 729, 750, 768, 783, 832
Offset: 1
Comments
A frugal number in base 2 is a number with more bits than the total number of bits of its prime factorization (including exponents > 1).
Following the definition by Pinch (1998), 1 is considered a frugal number.
Examples
32 is a term because 32 = 2^5 = 10_2^101_2; the total number of bits of (10_2, 101_2) = 5 < the number of bits of 32 = 100000_2 (6). 135 is a term because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Wikipedia, Frugal number.
A379538 Square array read by ascending antidiagonals: T(n,k) is the k-th frugal number in base n.
1, 1, 27, 1, 32, 32, 1, 27, 49, 49, 1, 27, 64, 64, 64, 1, 81, 81, 81, 81, 81, 1, 64, 125, 125, 121, 98, 121, 1, 64, 81, 243, 128, 125, 121, 125, 1, 81, 81, 125, 250, 162, 128, 125, 128, 1, 125, 125, 125, 243, 256, 169, 169, 128, 135, 1, 125, 128, 128, 128, 343, 289, 243, 243, 169, 147
Offset: 2
Comments
A frugal number in base n is a number with more digits (in its base n representation) than the total number of digits (in base n representation) of its prime factorization (including exponents > 1).
Following the definition by Pinch (1998), 1 is considered a frugal number.
Examples
Array begins: n\k| 1 2 3 4 5 6 7 8 9 10 ... --------------------------------------------------------- 2 | 1, 27, 32, 49, 64, 81, 121, 125, 128, 135, ... = A379537 3 | 1, 32, 49, 64, 81, 98, 121, 125, 128, 169, ... 4 | 1, 27, 64, 81, 121, 125, 128, 169, 243, 256, ... 5 | 1, 27, 81, 125, 128, 162, 169, 243, 256, 289, ... 6 | 1, 81, 125, 243, 250, 256, 289, 343, 361, 375, ... 7 | 1, 64, 81, 125, 243, 343, 361, 375, 405, 486, ... 8 | 1, 64, 81, 125, 128, 243, 343, 512, 529, 567, ... 9 | 1, 81, 125, 128, 243, 256, 343, 625, 729, 768, ... 10 | 1, 125, 128, 243, 256, 343, 512, 625, 729, 1024, ... = A046759 (without the initial 1) ... | \______ A379539 (main diagonal) A377478 T(2,10) = 135 because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8); and 135 is the tenth number with this property.
Links
- Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Giovanni Resta, Frugal numbers, Numbers Aplenty, 2013.
- Wikipedia, Frugal number.
Crossrefs
Programs
-
Mathematica
Module[{dmax = 15, a, m}, a = Table[m = 0; Table[While[Total[IntegerLength[Select[Flatten[FactorInteger[++m]], # > 1 &], n]] >= IntegerLength[m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
A254319 Hyper economical numbers.
27, 108, 125, 128, 129, 135, 138, 143, 159, 160, 184, 187, 189, 196, 207, 209, 216, 219, 243, 249, 256, 259, 265, 276, 295, 297, 329, 341, 351, 375, 403, 429, 451, 458, 469, 497, 512, 529, 621, 625, 671, 679, 729, 781, 795, 837, 841, 892, 896, 908, 916, 932
Offset: 1
Comments
The distinction between the economical numbers (A046759) is that the distinct digits are counted only instead all digits. Hence the definition:
Write n as product of primes raised to powers, let D(n) = total number of distinct digits in product representation (number of distinct digits in all the primes and number of distinct digits in all the exponents that are greater than 1) and nbd(n) = A043537(n) number of distinct digits in n; sequence gives n such that D(n) < nbd(n).
Examples
27 is in the sequence because 27 = 3 ^ 3 => D(27)= 1 < nbd(27)=2.
Programs
-
Mathematica
Cases[Range[400], n_ /; Length[Union[Flatten[IntegerDigits[FactorInteger[n] /. 1 -> Sequence[]]]]]< Length[Union[Flatten[IntegerDigits[n]]]]]
-
PARI
for(n=1,10^3,s=[];F=factor(n);for(i=1,#F[,1],s=concat(s,digits(F[i,1]));if(F[i,2]>1,s=concat(s,digits(F[i,2]))));if(#vecsort(digits(n),,8)>#vecsort(s,,8),print1(n,", "))) \\ Derek Orr, Jan 30 2015
Comments