A047211 Numbers that are congruent to {2, 4} mod 5.
2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 27, 29, 32, 34, 37, 39, 42, 44, 47, 49, 52, 54, 57, 59, 62, 64, 67, 69, 72, 74, 77, 79, 82, 84, 87, 89, 92, 94, 97, 99, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 132, 134, 137, 139, 142, 144, 147, 149, 152, 154, 157, 159, 162, 164, 167, 169, 172, 174, 177, 179, 182, 184
Offset: 1
Examples
The 7 X 7 matrix (dots for zeros): [....1.1] [...1.11] [..1.111] [.1.1111] [1.11111] [.111111] [1111111] has the characteristic polynomial x^7 - 5*x^6 - 4*x^5 + 15*x^4 + 5*x^3 - 11*x^2 - x + 1 which is irreducible over the field of rational numbers, and 7 is a term of the sequence. - _Joerg Arndt_, Aug 10 2011
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, Vol. 120, No. 5 (2013), pp. 409-429 [see p. 417].
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Haskell
a047211 n = a047211_list !! (n-1) a047211_list = filter ((`elem` [2,4]) . (`mod` 5)) [1..] -- Reinhard Zumkeller, Oct 03 2012
-
Magma
[Floor((5*n-1)/2): n in [1..50]]; // Wesley Ivan Hurt, May 25 2014
-
Maple
seq(5*floor((n-1)/2) +3 +(-1)^n, n=1..50); # Gary Detlefs, Mar 02 2010
-
Mathematica
Select[Range[0, 200], MemberQ[{2, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) LinearRecurrence[{1,1,-1},{2,4,7},80] (* Harvey P. Dale, Mar 26 2024 *)
-
PARI
a(n)=(5*n-1)\2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = a(n-1) +a(n-2) -a(n-3).
a(n) = (10*n-3-(-1)^n)/4, (n>=1). [Corrected by Bruno Berselli, Sep 20 2010]
a(n) = 5*floor((n-1)/2) +3 +(-1)^n. - Gary Detlefs, Mar 02 2010
G.f.: x*(2+2*x+x^2)/((1+x)*(1-x)^2). - Paul Barry, Sep 11 2008
a(n) = 5*n-a(n-1)-4 (with a(1)=2). - Vincenzo Librandi, Nov 18 2010
a(n) = floor((5*n-1)/2). - Gary Detlefs, May 14 2011
a(n) = 2*n + floor((n-1)/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2+2/sqrt(5))*Pi/10 - sqrt(5)*log(phi)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((10*x - 3)*exp(x) - exp(-x))/4. - David Lovler, Aug 23 2022
Extensions
Conjecture corrected by John M. Campbell, Aug 25 2011
Comments