cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A047380 Numbers that are congruent to {1, 2, 4, 5} mod 7.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 11, 12, 15, 16, 18, 19, 22, 23, 25, 26, 29, 30, 32, 33, 36, 37, 39, 40, 43, 44, 46, 47, 50, 51, 53, 54, 57, 58, 60, 61, 64, 65, 67, 68, 71, 72, 74, 75, 78, 79, 81, 82, 85, 86, 88, 89, 92, 93, 95, 96, 99, 100, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: x*(1+x+2*x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 11 - 3*i^(2*n) - (1+i)*i^(-n-1) - (1-i)*i^(n+1))/8 where i=sqrt(-1).
a(2n) = A047385(n), a(2n-1) = A047346(n). (End)

A047298 Numbers that are congruent to {1, 3, 4, 6} mod 7.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 88, 90, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 3, 4, 6]]; // Wesley Ivan Hurt, May 22 2016
  • Maple
    A047298:=n->I^(-n)*(I-1-7*I^n+14*n*I^n-(1+I)*I^(2*n)+I^(-n))/8: seq(A047298(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
  • Mathematica
    Table[I^(-n)*(I-1-7I^n+14n*I^n-(1+I)*I^(2n)+I^(-n))/8, {n, 80}] (* Wesley Ivan Hurt, May 22 2016 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 6, 8}, 80] (* Vincenzo Librandi, May 24 2016 *)

Formula

a(n) = ceiling(ceiling((7n + 2)/2)/2).
G.f.: x*(1+2*x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = i^(-n)*(i-1-7*i^n+14*n*i^n-(1+i)*i^(2n)+i^(-n))/8 where i=sqrt(-1).
a(2n) = A047280(n), a(2n-1) = A047346(n). (End)
E.g.f.: (4 + sin(x) - cos(x) + (7*x - 4)*sinh(x) + (7*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, May 23 2016

Extensions

More terms from Wesley Ivan Hurt, May 22 2016

A047351 Numbers that are congruent to {0, 1, 2, 4} mod 7.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 9, 11, 14, 15, 16, 18, 21, 22, 23, 25, 28, 29, 30, 32, 35, 36, 37, 39, 42, 43, 44, 46, 49, 50, 51, 53, 56, 57, 58, 60, 63, 64, 65, 67, 70, 71, 72, 74, 77, 78, 79, 81, 84, 85, 86, 88, 91, 92, 93, 95, 98, 99, 100, 102, 105, 106, 107, 109, 112
Offset: 1

Views

Author

Keywords

Comments

The set of values for m such that 7i+m is a perfect square (the quadratic residues of 7 including the trivial case of k*7). - Gary Detlefs, Mar 07 2010
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc. - Bruno Berselli, Dec 03 2012

Crossrefs

Cf. A045373 (primes), A047346, A047352.
Complement of A047327.

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 1, 2, 4]]; // Wesley Ivan Hurt, Jun 01 2016
    
  • Maple
    for i from 1 to 56 do if(i mod 4=0) then print(floor(7*i-3)/4)+1) else print(floor(7*i-3)/4)) fi od; # Gary Detlefs, Mar 07 2010
    A047351:=n->n-3+(6*n+(2-I^(2*n))*(1-2*I^(n*(n+1)))+1)/8: seq(A047351(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,1,2,4}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,2,4,7}, 60] (* Harvey P. Dale, Jun 04 2013 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+x+2*x^2+3*x^3)/((1+x)*(1+x^2)*(x-1)^2))) \\ Altug Alkan, Jun 02 2016

Formula

If n mod 4 = 0 then a(n) = floor((7*n-3)/4)+1, else a(n) = floor((7*n-3)/4). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(1+x+2*x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
a(n) = n-3+(6*n+(2-(-1)^n)(1-2*i^(n(n+1)))+1)/8, where i=sqrt(-1). - Bruno Berselli, Dec 03 2012
a(0)=0, a(1)=1, a(2)=2, a(3)=4, a(4)=7, a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Jun 04 2013
a(2k) = A047346(k), a(2k-1) = A047352(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: (12 + 3*sin(x) - cos(x) + (7*x - 10)*sinh(x) + (7*x - 11)*cosh(x))/4. - Ilya Gutkovskiy, Jun 02 2016

A047294 Numbers that are congruent to {1, 2, 4, 6} mod 7.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 92, 93, 95, 97, 99, 100, 102, 104, 106, 107, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 6, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 27 2012
    
  • Maple
    A047294:=n->ceil(floor((7*n-5)/2)/2): seq(A047294(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{1,2,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 27 2012 *)
    LinearRecurrence[{1,0,0,1,-1},{1,2,4,6,8},100] (* G. C. Greubel, Jun 01 2016 *)
  • PARI
    x='x+O('x^100); Vec(x*(1+x+2*x^2+2*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = ceiling(floor((7*n - 5)/2)/2).
From Colin Barker, Mar 14 2012: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x*(1 + x + 2*x^2 + 2*x^3 + x^4)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = (-9 -(-1)^n + (1+i)*(-i)^n + (1-i)*i^n + 14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
a(2k) = A047276(k), a(2k-1) = A047346(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: (4 + sin(x) + cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, Jun 01 2016

A047344 Numbers that are congruent to {0, 1, 3, 4} mod 7.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 10, 11, 14, 15, 17, 18, 21, 22, 24, 25, 28, 29, 31, 32, 35, 36, 38, 39, 42, 43, 45, 46, 49, 50, 52, 53, 56, 57, 59, 60, 63, 64, 66, 67, 70, 71, 73, 74, 77, 78, 80, 81, 84, 85, 87, 88, 91, 92, 94, 95, 98, 99, 101, 102, 105, 106, 108, 109
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3 and b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
G.f.: x^2*(1+2*x+x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-19-3*i^(2n)-(1-i)*i^(-n)-(1+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047346(n), a(2n-1) = A047355(n). (End)
E.g.f.: (12 + sin(x) - cos(x) + (7*x - 8)*sinh(x) + (7*x - 11)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

Extensions

More terms from Wesley Ivan Hurt, May 23 2016

A047366 Numbers that are congruent to {1, 3, 4, 5} mod 7.

Original entry on oeis.org

1, 3, 4, 5, 8, 10, 11, 12, 15, 17, 18, 19, 22, 24, 25, 26, 29, 31, 32, 33, 36, 38, 39, 40, 43, 45, 46, 47, 50, 52, 53, 54, 57, 59, 60, 61, 64, 66, 67, 68, 71, 73, 74, 75, 78, 80, 81, 82, 85, 87, 88, 89, 92, 94, 95, 96, 99, 101, 102, 103, 106, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 3, 4, 5]]; // Wesley Ivan Hurt, May 24 2016
  • Maple
    A047366:=n->(14*n-9-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047366(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
  • Mathematica
    Table[(14n-9-I^(2n)-(3-I)*I^(-n)-(3+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
    Select[Range@ 120, MemberQ[{1, 3, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *)

Formula

G.f.: x*(1+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-9-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047346(k). (End)
E.g.f.: (8 + sin(x) - 3*cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016

Extensions

More terms from Wesley Ivan Hurt, May 24 2016

A271937 a(n) = (7/4)*n^2 + (5/2)*n + (7 + (-1)^n)/8.

Original entry on oeis.org

1, 5, 13, 24, 39, 57, 79, 104, 133, 165, 201, 240, 283, 329, 379, 432, 489, 549, 613, 680, 751, 825, 903, 984, 1069, 1157, 1249, 1344, 1443, 1545, 1651, 1760, 1873, 1989, 2109, 2232, 2359, 2489, 2623, 2760, 2901, 3045, 3193, 3344, 3499, 3657, 3819, 3984, 4153
Offset: 0

Views

Author

Vincenzo Librandi, Apr 20 2016

Keywords

Comments

Let P be a polygon with vertices (0,0), (0,2), (1,1) and (0,3/2). The number of integer points in nP is counted by this quasi-polynomial (nP is the n-fold dilation of P). See Wikipedia in Links section.
From Bob Selcoe, Sep 10 2016: (Start)
a(n) = the number of partitions in reverse lexicographic order starting with n 3's followed by n 2's; i.e., the number of partitions summing to 5n such that no part > 3 and the number of 3's digits <= the number of 2's digits.
First differences are A047346(n+1); second differences are 4 when n is even and 3 when n is odd (i.e., A010702(n+1)); third differences are 1 when n is even and -1 when n is odd. (End)

Examples

			a(1) = 5; the 5 partitions are: {3,2}; {3,1,1}; {2,2,1}; {2,1,1,1}; {1,1,1,1,1}.
a(3) = 24: floor(8/2) + floor(11/2) + floor(14/2) + floor(17/2) = 4+5+7+8 = 24.
		

Crossrefs

First bisection (after 1) is A168235.
Second bisection is A135703 (without 0).

Programs

  • Magma
    [(7/4)*n^2+(5/2)*n+(7+(-1)^n)/8: n in [0..50]];
    
  • Mathematica
    Table[(7/4) n^2 + (5/2) n + (7 + (-1)^n)/8, {n, 0, 50}]
    LinearRecurrence[{2,0,-2,1},{1,5,13,24},50] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    Vec((1+3*x+3*x^2)/((1-x)^3*(1+x)) + O(x^99)) \\ Altug Alkan, Sep 10 2016

Formula

O.g.f.: (1 + 3*x + 3*x^2)/((1 - x)^3*(1 + x)).
E.g.f.: (7 + 34*x + 14*x^2)*exp(x)/8 + exp(-x)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(2*k) = k*(7*k + 5) + 1, a(2*k+1) = (k + 1)*(7*k + 5).
From Bob Selcoe, Sep 10 2016 (Start):
a(n) = (n+1)^2 + A006578(n).
a(n) = a(n-1) + A047346(n+1).
a(n) = Sum_{j=0..n} floor((2n+3j+2)/2).
(End)

Extensions

Edited and extended by Bruno Berselli, Apr 20 2016
Showing 1-7 of 7 results.