A047382 Numbers that are congruent to {0, 5} mod 7.
0, 5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 40, 42, 47, 49, 54, 56, 61, 63, 68, 70, 75, 77, 82, 84, 89, 91, 96, 98, 103, 105, 110, 112, 117, 119, 124, 126, 131, 133, 138, 140, 145, 147, 152, 154, 159, 161, 166, 168
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
&cat[[7*n,7*n+5]: n in [0..23]]; // Bruno Berselli, Oct 17 2011
-
Mathematica
{#, 5 + #} &/@ (7 Range[0, 30]) // Flatten (* or *) LinearRecurrence[{1, 1, -1}, {0, 5, 7}, 60] (* Harvey P. Dale, Dec 01 2016 *)
-
PARI
a(n) = (14*n + 3*(-1)^n - 11)/4 \\ David Lovler, Sep 11 2022
Formula
a(n) = 7*n - a(n-1) - 9 for n>1, with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=A005009(k-1)=7*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x^2*(5 + 2*x)/((1 + x)*(1 - x)^2).
a(n) = (14*n + 3*(-1)^n - 11)/4.
a(-n) = -A047352(n+2). (End)
a(n) = ceiling((7/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
E.g.f.: 2 + ((14*x - 11)*exp(x) + 3*exp(-x))/4. - David Lovler, Sep 11 2022
Comments