cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A245334 A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2014

Keywords

Comments

row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.

Examples

			.  0:   1;
.  1:   2,  1;
.  2:   3,  4,   2;
.  3:   4,  9,  12,    6;
.  4:   5, 16,  36,   48,    24;
.  5:   6, 25,  80,  180,   240,   120;
.  6:   7, 36, 150,  480,  1080,  1440,    720;
.  7:   8, 49, 252, 1050,  3360,  7560,  10080,   5040;
.  8:   9, 64, 392, 2016,  8400, 26880,  60480,  80640,  40320;
.  9:  10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
		

Crossrefs

Programs

  • Haskell
    a245334 n k = a245334_tabl !! n !! k
    a245334_row n = a245334_tabl !! n
    a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
  • Mathematica
    Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)

Formula

T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017

A212163 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212162 for example. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212195 first at (n,k) = (4,5): A(4,5) = 4034304, A212195(4,5) = 4038432.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4034304, ...
  5,  180,   32940,     30847500,      148039757460, ...
  6,  480,  393600,   3312560640,   286169360240640, ...
  7, 1050, 2735250, 123791435250, 97337270132408250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068246, 6*A068247.
Rows n=1-15 give: A000007, A000038, A040006, 4*A068271, 5*A068272, 6*A068273, 7*A068274, 8*A068275, 9*A068276, 10*A068277, 11*A068278, 12*A068279, 13*A068280, 14*A068281, 15*A068282.

A212195 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4038432, ...
  5,  180,   32940,     30847500,      148046704020, ...
  6,  480,  393600,   3312560640,   286170443437440, ...
  7, 1050, 2735250, 123791435250, 97337320223288250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

A059238 Orders of the finite groups GL_2(K) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 48, 180, 480, 2016, 3528, 5760, 13200, 26208, 61200, 78336, 123120, 267168, 374400, 511056, 682080, 892800, 1014816, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 11908560, 13615200, 16511040, 19845936, 25048800, 28003968
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 21 2001

Keywords

Comments

From Jianing Song, Nov 06 2019: (Start)
GL_2(K) means the group of invertible 2 X 2 matrices A over K.
In general, let R be any commutative ring with unity, GL_n(R) be the group of n X n matrices A over R such that det(A) != 0 and SL_n(R) be the group of n X n matrices A over R such that det(A) = 1, then GL_n(R)/SL_n(R) = R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in GL_n(R), then f is a surjective homomorphism from GL_n(K) to R*, and SL_n(R) is its kernel. Thus |GL_n(R)|/|SL_n(R)| = |R*|; if K is a finite field, then |GL_n(R)|/|SL_n(R)| = |K|-1. (End)

Examples

			a(4) = 480 because A246655(4) = 5, and (5^2-1)*(5^2-5) = 480.
		

Crossrefs

Subsequence of A047927.
Cf. A246655, A000252 (order of GL_2(Z_n)).
For the order of SL_2(K) see A329119.

Programs

  • Maple
    with(numtheory): for n from 2 to 400 do if nops(ifactors(n)[2]) = 1 then printf(`%d,`, (n+1)*(n)*(n-1)^2) fi: od:
  • Mathematica
    nn=30;a=Take[Union[Sort[Flatten[Table[Table[Prime[m]^k,{m,1,nn}],{k,1,nn}]]]],nn];Table[(q^2-1)(q^2-q),{q,a}]  (* Geoffrey Critzer, Apr 20 2013 *)
  • PARI
    [(p+1)*p*(p-1)^2 | p <- [1..200], isprimepower(p)] \\ Jianing Song, Nov 05 2019

Formula

If the finite field K has p^m elements, then the order of the group GL_2(K) is (p^(2m)-1)*(p^(2m)-p^m) = (p^m+1)*(p^m)*(p^m-1)^2.
a(n) = A047927(A246655(n)+1). - Jianing Song, Nov 05 2019
a(n) = (A246655(n)-1)*A329119(n). - Jianing Song, Nov 06 2019

Extensions

More terms from James Sellers, Jan 22 2001
Offset corrected by Jianing Song, Nov 05 2019

A244509 Order of GL_2(p), the general linear group over F_p, where p runs through the primes.

Original entry on oeis.org

6, 48, 480, 2016, 13200, 26208, 78336, 123120, 267168, 682080, 892800, 1822176, 2755200, 3337488, 4773696, 7738848, 11908560, 13615200, 19845936, 25048800, 28003968, 38450880, 46879728, 62029440, 87607296, 103020000, 111447648, 129843216, 139851360
Offset: 1

Views

Author

John McGee, Nov 15 2014

Keywords

Examples

			For n=3 (p=5) we have a(3) = 4*5*(25-1) = 480.
		

Crossrefs

Cf. A127917 (order of SL_2(p)), A047927.

Programs

  • Magma
    [(NthPrime(n)-1)*NthPrime(n)*(NthPrime(n)^2-1): n in [1..100]]; // Vincenzo Librandi, Aug 15 2018
  • Mathematica
    gl2psz[p_] := (p - 1) p (p^2 - 1); sqg = gl2psz/@Prime@Range[m]
    Table[(Prime[n] - 1) Prime[n] (Prime[n]^2 - 1), {n, 30}] (* Vincenzo Librandi, Aug 15 2018 *)
  • PARI
    a(n) = { my(p=prime(n)); (p-1)*p*(p^2-1) } \\ Joerg Arndt, Nov 23 2014
    

Formula

a(n) = (p-1)*p*(p^2-1) where p = prime(n).
a(n) = A127917(n)*(prime(n)-1).
Subsequence of A047927. - Michel Marcus, Nov 25 2014
Sum 1/a(n) = A382584. - R. J. Mathar, Mar 31 2025

A342239 Table read by upward antidiagonals: T(n,k) is the number of strings of length k over an n-letter alphabet that are bifix free; n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 4, 0, 5, 12, 18, 6, 0, 6, 20, 48, 48, 12, 0, 7, 30, 100, 180, 144, 20, 0, 8, 42, 180, 480, 720, 414, 40, 0, 9, 56, 294, 1050, 2400, 2832, 1242, 74, 0, 10, 72, 448, 2016, 6300, 11900, 11328, 3678, 148, 0, 11, 90, 648, 3528, 14112, 37620, 59500, 45132, 11034, 284, 0
Offset: 1

Views

Author

Peter Kagey, Mar 06 2021

Keywords

Examples

			Table begins:
n\k | 1  2   3    4     5      6       7        8         9
----+------------------------------------------------------
  1 | 1  0   0    0     0      0       0        0         0
  2 | 2  2   4    6    12     20      40       74       148
  3 | 3  6  18   48   144    414    1242     3678     11034
  4 | 4 12  48  180   720   2832   11328    45132    180528
  5 | 5 20 100  480  2400  11900   59500   297020   1485100
  6 | 6 30 180 1050  6300  37620  225720  1353270   8119620
  7 | 7 42 294 2016 14112  98490  689430  4823994  33767958
  8 | 8 56 448 3528 28224 225344 1802752 14418488 115347904
		

Crossrefs

Rows: A003000 (n=2), A019308 (n=3), A019309 (n=4).
Columns: A002378 (k=1), A045991 (k=2), A047927 (k=3).

Formula

T(n,0) = n.
T(n,2k) = n*T(n,2k-1) - T(n,k).
T(n,2k+1) = n*T(n,2k).
Showing 1-6 of 6 results.