A048250 Sum of the squarefree divisors of n.
1, 3, 4, 3, 6, 12, 8, 3, 4, 18, 12, 12, 14, 24, 24, 3, 18, 12, 20, 18, 32, 36, 24, 12, 6, 42, 4, 24, 30, 72, 32, 3, 48, 54, 48, 12, 38, 60, 56, 18, 42, 96, 44, 36, 24, 72, 48, 12, 8, 18, 72, 42, 54, 12, 72, 24, 80, 90, 60, 72, 62, 96, 32, 3, 84, 144, 68, 54, 96, 144, 72, 12, 74
Offset: 1
Examples
For n=1000, out of the 16 divisors, four are squarefree: {1,2,5,10}. Their sum is 18. Or, 1000 = 2^3*5^3 hence a(1000) = (2+1)*(5+1) = 18.
References
- D. Suryanarayana, On the core of an integer, Indian J. Math. 14 (1972) 65-74.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Unitarism and infinitarism.
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Haskell
a034448 = sum . a206778_row -- Reinhard Zumkeller, Feb 12 2012
-
Maple
A048250 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]): od: RETURN(ans) end: # alternative: seq(mul(1+p, p = numtheory:-factorset(n)), n=1..1000); # Robert Israel, Mar 18 2015
-
Mathematica
sumOfSquareFreeDivisors[ n_ ] := Plus @@ Select[ Divisors[ n ], MoebiusMu[ # ] != 0 & ]; Table[ sumOfSquareFreeDivisors[ i ], {i, 85} ] Table[Total[Select[Divisors[n],SquareFreeQ]],{n,80}] (* Harvey P. Dale, Jan 25 2013 *) a[1] = 1; a[n_] := Times@@(1 + FactorInteger[n][[;;,1]]); Array[a, 100] (* Amiram Eldar, Dec 19 2018 *)
-
PARI
a(n)=if(n<1,0,sumdiv(n,d,if(core(d)==d,d)))
-
PARI
a(n)=if(n<1,0,direuler(p=2,n,(1+p*X)/(1-X))[n])
-
PARI
a(n)=sumdiv(n,d,moebius(d)^2*d); \\ Joerg Arndt, Jul 06 2011
-
PARI
a(n)=my(f=factor(n)); for(i=1,#f~,f[i,2]=1); sigma(f) \\ Charles R Greathouse IV, Sep 09 2014
-
Python
from math import prod from sympy import primefactors def A048250(n): return prod(p+1 for p in primefactors(n)) # Chai Wah Wu, Apr 20 2023
-
Sage
def A048250(n): return mul(map(lambda p: p+1, prime_divisors(n))) [A048250(n) for n in (1..73)] # Peter Luschny, May 23 2013
Formula
If n = Product p_i^e_i, a(n) = Product (p_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(2*s-2). - Michael Somos, Sep 08 2002
a(n) = Sum_{d|n} mu(d)^2*d = Sum_{d|n} |A055615(d)|. - Benoit Cloitre, Dec 09 2002
Pieter Moree (moree(AT)mpim-bonn.mpg.de), Feb 20 2004 can show that Sum_{n <= x} a(n) = x^2/2 + O(x*sqrt{x}) and adds: "As S. R. Finch pointed out to me, in Suryanarayana's paper this is proved under the Riemann hypothesis with error term O(x^{7/5+epsilon})".
G.f.: Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = 1. - Amiram Eldar, Jun 10 2020
a(n) = Sum_{d divides n} mu(d)^2*core(d), where core(n) = A007913(n). - Peter Bala, Jan 24 2024
Comments