cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048250 Sum of the squarefree divisors of n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 4, 18, 12, 12, 14, 24, 24, 3, 18, 12, 20, 18, 32, 36, 24, 12, 6, 42, 4, 24, 30, 72, 32, 3, 48, 54, 48, 12, 38, 60, 56, 18, 42, 96, 44, 36, 24, 72, 48, 12, 8, 18, 72, 42, 54, 12, 72, 24, 80, 90, 60, 72, 62, 96, 32, 3, 84, 144, 68, 54, 96, 144, 72, 12, 74
Offset: 1

Views

Author

Keywords

Comments

Also sum of divisors of the squarefree kernel of n: a(n) = A000203(A007947(n)). - Reinhard Zumkeller, Jul 19 2002
The absolute values of the Dirichlet inverse of A001615. - R. J. Mathar, Dec 22 2010
Row sums of the triangle in A206778. - Reinhard Zumkeller, Feb 12 2012
Inverse Möbius transform of n * mu(n)^2 = |A055615(n)|. - Wesley Ivan Hurt, Jun 08 2023

Examples

			For n=1000, out of the 16 divisors, four are squarefree: {1,2,5,10}. Their sum is 18. Or, 1000 = 2^3*5^3 hence a(1000) = (2+1)*(5+1) = 18.
		

References

  • D. Suryanarayana, On the core of an integer, Indian J. Math. 14 (1972) 65-74.

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), this sequence (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Cf. A240976 (tenth of Dgf at s=3).

Programs

  • Haskell
    a034448 = sum . a206778_row  -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    A048250 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]): od: RETURN(ans) end:
    # alternative:
    seq(mul(1+p, p = numtheory:-factorset(n)), n=1..1000); # Robert Israel, Mar 18 2015
  • Mathematica
    sumOfSquareFreeDivisors[ n_ ] := Plus @@ Select[ Divisors[ n ], MoebiusMu[ # ] != 0 & ]; Table[ sumOfSquareFreeDivisors[ i ], {i, 85} ]
    Table[Total[Select[Divisors[n],SquareFreeQ]],{n,80}] (* Harvey P. Dale, Jan 25 2013 *)
    a[1] = 1; a[n_] := Times@@(1 + FactorInteger[n][[;;,1]]); Array[a, 100] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,if(core(d)==d,d)))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,(1+p*X)/(1-X))[n])
    
  • PARI
    a(n)=sumdiv(n,d,moebius(d)^2*d); \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    a(n)=my(f=factor(n)); for(i=1,#f~,f[i,2]=1); sigma(f) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A048250(n): return prod(p+1 for p in primefactors(n)) # Chai Wah Wu, Apr 20 2023
  • Sage
    def A048250(n): return mul(map(lambda p: p+1, prime_divisors(n)))
    [A048250(n) for n in (1..73)]  # Peter Luschny, May 23 2013
    

Formula

If n = Product p_i^e_i, a(n) = Product (p_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(2*s-2). - Michael Somos, Sep 08 2002
a(n) = Sum_{d|n} mu(d)^2*d = Sum_{d|n} |A055615(d)|. - Benoit Cloitre, Dec 09 2002
Pieter Moree (moree(AT)mpim-bonn.mpg.de), Feb 20 2004 can show that Sum_{n <= x} a(n) = x^2/2 + O(x*sqrt{x}) and adds: "As S. R. Finch pointed out to me, in Suryanarayana's paper this is proved under the Riemann hypothesis with error term O(x^{7/5+epsilon})".
a(n) = psi(rad(n)) = A001615(A007947(n)). - Enrique Pérez Herrero, Aug 24 2010
a(n) = rad(n)*psi(n)/n = A001615(n)*A007947(n)/n. - Enrique Pérez Herrero, Aug 31 2010
G.f.: Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = 1. - Amiram Eldar, Jun 10 2020
a(n) = Sum_{d divides n} mu(d)^2*core(d), where core(n) = A007913(n). - Peter Bala, Jan 24 2024