A007921
Numbers that are not the difference of two primes.
Original entry on oeis.org
7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 79, 83, 85, 89, 91, 93, 97, 103, 109, 113, 115, 117, 119, 121, 123, 127, 131, 133, 139, 141, 143, 145, 151, 153, 157, 159, 163, 167, 169, 173, 175, 181, 183, 185, 187, 193
Offset: 1
- F. Smarandache, Properties of Numbers, 1972. (See Smarandache odd sieve.)
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Diophante, A1880. NP en PA (prime numbers in arithmetic progression) (in French).
- C. Dumitrescu and V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I.
- F. Smarandache, Only Problems, Not Solutions!, 4th ed., 1993, Problem 94.
- Wikipedia, Primes in arithmetic progression.
- Index entries for sequences related to primes in arithmetic progressions.
- Index entries for primes, gaps between.
Largest AP of prime numbers with k elements: this sequence (k=1),
A359408 (k=2),
A206037 (k=3),
A359409 (k=4),
A206039 (k=5),
A359410 (k=6),
A206041 (k=7),
A206042 (k=8),
A206043 (k=9),
A206044 (k=10),
A206045 (k=11).
-
a007921 n = a007921_list !! (n-1)
a007921_list = filter ((== 0) . a010051' . (+ 2)) [1, 3 ..]
-- Reinhard Zumkeller, Jul 03 2015
-
filter := d -> irem(d, 2) <> 0 and not isprime(2+d) : select(filter, [`$`(1 .. 200)]); # Bernard Schott, Jan 08 2023
-
Lim=200;nn=10;seq:=Complement[Range[Lim],Union[Flatten[Differences/@Subsets[Prime[Range[nn]],{2}]]]];Until[AllTrue[seq,OddQ],nn++];seq (* James C. McMahon, May 04 2024 *)
-
is(n)=n%2 && !isprime(n+2) \\ On Polignac's conjecture; Charles R Greathouse IV, Jun 28 2013
-
from sympy import isprime
print([n for n in range(1, 200) if n%2 and not isprime(n + 2)]) # Indranil Ghosh, Jun 15 2017, after Charles R Greathouse IV
A007606
Take 1, skip 2, take 3, etc.
Original entry on oeis.org
1, 4, 5, 6, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 137, 138
Offset: 1
From _Omar E. Pol_, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the odd numbers the sequence begins:
1;
4, 5, 6;
11, 12, 13, 14, 15;
22, 23, 24, 25, 26, 27, 28;
37, 38, 39, 40, 41, 42, 43, 44, 45;
56, 57, 58, 59, 60, 61, 62 , 63, 64, 65, 66;
79, 80, 81, 82 , 83, 84, 85, 86, 87, 88, 89, 90, 91;
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120;
...
Row sums give A005917.
Column 1 gives A084849.
Column 2 gives A096376, n >= 1.
Right border gives A000384, n >= 1.
(End)
- C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Smarandache, Properties of Numbers, 1972.
-
a007606 n = a007606_list !! (n-1)
a007606_list = takeSkip 1 [1..] where
takeSkip k xs = take k xs ++ takeSkip (k + 2) (drop (2*k + 1) xs)
-- Reinhard Zumkeller, Feb 12 2011
-
Flatten[ Table[i, {j, 1, 17, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
Join[{1},Flatten[With[{nn=20},Range[#[[1]],Total[#]]&/@Take[Thread[ {Accumulate[ Range[nn]]+1,Range[nn]}],{2,-1,2}]]]] (* Harvey P. Dale, Jun 23 2013 *)
With[{nn=20},Take[TakeList[Range[(nn(nn+1))/2],Range[nn]],{1,nn,2}]]//Flatten (* Harvey P. Dale, Feb 10 2023 *)
-
for(n=1,66,m=sqrtint(n-1);print1(n+m*(m+1),","))
A064801
Take 1, skip 2, take 2, skip 3, take 3, etc.
Original entry on oeis.org
1, 4, 5, 9, 10, 11, 16, 17, 18, 19, 25, 26, 27, 28, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1
-
a064801 n = a064801_list !! (n-1)
a064801_list = f 1 [1..] where
f k xs = us ++ f (k + 1) (drop (k + 1) vs)
where (us, vs) = splitAt k xs
-- Reinhard Zumkeller, May 16 2014
-
seq(`if`(floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k, k, NULL), k = 0..2034); # a(1)..a(1000), Rainer Rosenthal, Jul 19 2024
-
a = Table[n, {n, 0, 200} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
Flatten[Table[Range[n^2,n^2+n-1],{n,12}]] (* Harvey P. Dale, Dec 18 2015 *)
-
{ n=0; for (m=1, 10^9, s=m^2; a=0; for (k=0, m - 1, a=s+k; write("b064801.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Sep 26 2009
-
from math import isqrt # after Rainer Rosenthal
def isA(k: int): return k < ((s:=isqrt(k)) * (s + 1))
print([k for k in range(129) if isA(k)]) # Peter Luschny, Jul 19 2024
A347350
Sequence obtained by writing the first 4 integers and skipping 1, then writing the next 5 integers and skipping 2, then writing the next 6 and skipping 3, etc.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 33, 34, 35, 36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
-
lista(nn) = {my(va=[1..nn], list=List()); my(i=4, j=1, pos=1, ok=1); while (ok, for(m=1, i, if (pos > nn, ok=0, listput(list, va[pos])); pos++; ); pos += j; i++; j++;); Vec(list);}
Showing 1-4 of 4 results.
Comments