cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A122596 Antidiagonal sums of the row-reversed triangle A048998 of Bernoulli polynomial coefficients.

Original entry on oeis.org

1, 2, 5, 18, 85, 492, 3360, 26400, 234356, 2318280, 25278120, 301143360, 3891041400, 54191780160, 809233528320, 12897125337600, 218497018912704, 3920950622655360, 74295176671900800, 1482268147441804800
Offset: 0

Views

Author

Paul Curtz, Jun 07 2007

Keywords

Comments

A048998 with all rows reversed is
1
2.....-1
6.....-6...1
24...-36..12.0
120.-240.120.0.-4
The signed antidiagonal sums are sum_{m=0..n/2}(-1)^m*A048998(n-m,n-2m) = 1, 2, 7, 30, 157, 972, 6960, 56640, 516596,...
The antidiagonal sums of A048998 in its original order are 1, -1, 3, -6, 14, -36, 144, -240, -6576, -1800, 2143560, -15120,...

Examples

			a(3)=24-6=18. a(4)=120-36+1=85.
		

Crossrefs

Cf. A048998.

Formula

a(n) = Sum_{m=0..n/2} A048998(n-m,n-2m). - R. J. Mathar, Jul 12 2008

Extensions

Partially edited and extended by R. J. Mathar, Jul 12 2008

A053383 Triangle T(n,k) giving denominator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 1, 2, 2, 1, 1, 1, 1, 1, 30, 1, 2, 3, 1, 6, 1, 1, 1, 2, 1, 2, 1, 42, 1, 2, 2, 1, 6, 1, 6, 1, 1, 1, 3, 1, 3, 1, 3, 1, 30, 1, 2, 1, 1, 5, 1, 1, 1, 10, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 66, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2730, 1, 2, 1, 1, 6, 1, 7, 1, 10, 1, 3, 1, 210, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Examples

			The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x - 1/2; x^2 - x + 1/6; x^3 - (3/2)*x^2 + (1/2)*x; x^4 - 2*x^3 + x^2 - 1/30; x^5 - (5/2)*x^4 + (5/3)*x^3 - (1/6)*x; x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42; ...
Triangle A053382/A053383 begins:
  1;
  1, -1/2;
  1,  -1,  1/6;
  1, -3/2, 1/2, 0;
  1,  -2,   1,  0, -1/30;
  1, -5/2, 5/3, 0, -1/6, 0;
  1,  -3,  5/2, 0, -1/2, 0, 1/42;
  ...
Triangle A196838/A196839 begins (this is the reflected version):
    1;
  -1/2,   1;
   1/6,  -1,    1;
    0,   1/2, -3/2,  1;
  -1/30,  0,    1,  -2,    1;
    0,  -1/6,   0,  5/3, -5/2,  1;
   1/42,  0,  -1/2,  0,   5/2, -3, 1;
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 53.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 19, equations 19:4:1 - 19:4:8 at page 169.

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.
Cf. A144845 (lcm of row n).

Programs

  • Maple
    with(ListTools): with(PolynomialTools):
    CoeffList := p -> Reverse(CoefficientList(p, x)):
    Trow := n -> denom(CoeffList(bernoulli(n, x))):
    Flatten([seq(Trow(n), n = 0..13)]); # Peter Luschny, Apr 10 2021
  • Mathematica
    t[n_, k_] := Denominator[ Coefficient[ BernoulliB[n, x], x, n - k]]; Flatten[ Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jan 15 2013 *)
  • PARI
    v=[];for(n=0,6,v=concat(v,apply(denominator,Vec(bernpol(n)))));v \\ Charles R Greathouse IV, Jun 08 2012

Extensions

More terms from James Sellers, Jan 10 2000

A196838 Numerators of coefficients of Bernoulli polynomials with rising powers of the variable.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 0, 1, -3, 1, -1, 0, 1, -2, 1, 0, -1, 0, 5, -5, 1, 1, 0, -1, 0, 5, -3, 1, 0, 1, 0, -7, 0, 7, -7, 1, -1, 0, 2, 0, -7, 0, 14, -4, 1, 0, -3, 0, 2, 0, -21, 0, 6, -9, 1, 5, 0, -3, 0, 5, 0, -7, 0, 15, -5, 1, 0, 5, 0, -11, 0, 11, 0, -11, 0, 55, -11, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 23 2011

Keywords

Comments

The denominator triangle is found under A196839.
This is the row reversed triangle A053382.
From Wolfdieter Lang, Oct 25 2011: (Start)
This is the Sheffer triangle (z/(exp(z)-1),z), meaning that the column e.g.f.'s are as given below in the formula section. In Roman's book `The Umbral Calculus`, Ch. 2, 5., p. 26ff this is called Appell for (exp(t)-1)/t (see A048854 for the reference).
The e.g.f. for the a- and z-sequence for this Sheffer triangle is 1 and (x-exp(x)+1)/x^2, respectively. See the link under A006232 for the definition. The z-sequence is z(n) = -1/(2*A000217(n+1)). This leads to the recurrence relations given below.
The e.g.f. for the row sums is x/(1-exp(-x)), leading to the rational sequence A164555(n)/A027664(n). The e.g.f. of the alternating row sums is
x/(exp(x)*(exp(x)-1)), leading to the rational sequence
(-1)^n*A164558(n)/A027664(n).
(End)

Examples

			The triangle starts with
n\m 0  1  2  3  4  5  6  7  8 ...
0:  1
1: -1  1
2:  1 -1  1
3:  0  1 -3  1
4: -1  0  1 -2  1
5:  0 -1  0  5 -5  1
6:  1  0 -1  0  5 -3  1
7:  0  1  0 -7  0  7 -7  1
8: -1  0  2  0 -7  0 14 -4  1
...
The rational triangle a(n,m)/A196839(n,m) starts with:
n\m   0     1     2    3    4    5     6    7   8 ...
0:    1
1:  -1/2    1
2:   1/6   -1     1
3:    0    1/2  -3/2   1
4:  -1/30   0     1   -2    1
5:    0   -1/6    0   5/3 -5/2   1
6:   1/42   0   -1/2   0   5/2  -3     1
7:    0    1/6    0  -7/6   0   7/2  -7/2   1
8:  -1/30   0    2/3   0  -7/3   0   14/3  -4   1
...
E.g., Bernoulli(2,x) = (1/6)*x^0 - 1*x^1 + 1*x^2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994.

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Programs

  • Maple
    # Without using Maple's Bernoulli polynomials (Kawasaki and Ohno call it
    # the 'triangle algorithm for B(n, x)'):
    b := proc(n, m, x) option remember; if n = 0 then 1/(m + 1) else
    normal((m + 1)*b(n-1, m + 1, x) - (m + 1 - x)*b(n-1, m, x)) fi end:
    Bcoeffs := n -> local k; [seq(coeff(b(n, 0, x), x, k), k = 0..n)]:
    for n from 0 to 8 do numer(Bcoeffs(n)) od; # Peter Luschny, Jun 16 2023
  • Mathematica
    row[n_] := CoefficientList[BernoulliB[n, x], x] // Numerator;
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 15 2018 *)
  • PARI
    row(n) = apply(x->numerator(x), Vecrev(bernpol(n)));
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Jun 15 2018

Formula

T(n,m) = numerator([x^m]Bernoulli(n,x)), n>=0, m=0..n.
E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).
See the Graham et al. reference, eq. (7.80), p. 354.
From Wolfdieter Lang, Oct 25 2011: (Start)
The e.g.f. for column no. m>=0 of the rational triangle B(n,m):=a(n,m)/A096839(n,m) is x^(m+1)/(m!*(exp(x)-1)).
(see the Sheffer-Appell comment above).
The Sheffer a-sequence, given as comment above, leads to the recurrence r(n,m)=(n/m)*r(n-1,m-1), n>=1, m>=1. E.g., -1/6 = B(5,1) = (5/1)*B(4,0)= -5/30 = -1/6.
The Sheffer z-sequence, given as comment above, leads to the recurrence
B(n,0) = n*sum(z(j)*B(n-1,j),j=0..n-1), n>=1. B(0,0)=1.
E.g., -1/30 = B(4,0) = 4*((-1/2)*0 + (-1/6)*(1/2) + (-1/12)*(-3/2) + (-1/20)*1) = -1/30.
(End)
T(n,m) = numerator(binomial(n,m)*Bernoulli(n-m)). - Fabián Pereyra, Mar 04 2020

A196839 Triangle of denominators of the coefficient of x^m in the n-th Bernoulli polynomial, 0 <= m <= n.

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 1, 2, 2, 1, 30, 1, 1, 1, 1, 1, 6, 1, 3, 2, 1, 42, 1, 2, 1, 2, 1, 1, 1, 6, 1, 6, 1, 2, 2, 1, 30, 1, 3, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 1, 5, 1, 1, 2, 1, 66, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 1, 1, 6, 2, 1, 2730, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 23 2011

Keywords

Comments

The numerator triangle is found under A196838.
This is the row reversed triangle A053383.

Examples

			The triangle starts with
n\m 0  1  2  3  4  5  6  7  8 ...
0:  1
1:  2  1
2:  6  1  1
3:  1  2  2  1
4: 30  1  1  1  1
5:  1  6  1  3  2  1
6: 42  1  2  1  2  1  1
7:  1  6  1  6  1  2  2  1
8: 30  1  3  1  3  1  3  1  1
...
For the start of the rational triangle A196838(n,m)/a(n,m) see the example section in A196838.
		

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Programs

  • Maple
    with(ListTools):with(PolynomialTools):
    CoeffList := p -> CoefficientList(p, x):
    Trow := n -> denom(CoeffList(bernoulli(n, x))):
    Flatten([seq(Trow(n), n = 0..12)]); # Peter Luschny, Apr 10 2021

Formula

T(n,m) = denominator([x^m]Bernoulli(n,x)), n>=0, m=0..n.
E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).
See the Graham et al. reference given in A196838, eq. (7.80), p. 354.
T(n,m) = denominator(binomial(n,m)*Bernoulli(n-m)). - Fabián Pereyra, Mar 04 2020

Extensions

Name edited by M. F. Hasler, Mar 09 2020

A053382 Triangle T(n,k) giving numerator of coefficient of x^(n-k) in Bernoulli polynomial B(n, x), n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 1, -1, 1, -1, 1, 1, -3, 1, 0, 1, -2, 1, 0, -1, 1, -5, 5, 0, -1, 0, 1, -3, 5, 0, -1, 0, 1, 1, -7, 7, 0, -7, 0, 1, 0, 1, -4, 14, 0, -7, 0, 2, 0, -1, 1, -9, 6, 0, -21, 0, 2, 0, -3, 0, 1, -5, 15, 0, -7, 0, 5, 0, -3, 0, 5, 1, -11, 55, 0, -11, 0, 11, 0, -11, 0, 5, 0, 1, -6, 11, 0, -33, 0, 22, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Examples

			The polynomials B(0,x), B(1,x), B(2,x), ... are 1; x-1/2; x^2-x+1/6; x^3-3/2*x^2+1/2*x; x^4-2*x^3+x^2-1/30; x^5-5/2*x^4+5/3*x^3-1/6*x; x^6-3*x^5+5/2*x^4-1/2*x^2+1/42; ...
Triangle A053382/A053383 begins:
  1,
  1, -1/2,
  1, -1, 1/6,
  1, -3/2, 1/2, 0,
  1, -2, 1, 0, -1/30,
  1, -5/2, 5/3, 0, -1/6, 0,
  1, -3, 5/2, 0, -1/2, 0, 1/42,
  ...
Triangle A196838/A196839 begins (this is the reflected version):
  1,
  -1/2, 1,
  1/6, -1, 1,
  0, 1/2, -3/2, 1,
  -1/30, 0, 1, -2, 1,
  0, -1/6, 0, 5/3, -5/2, 1,
  1/42, 0, -1/2, 0, 5/2, -3, 1,
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14a].
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 19, equations 19:4:1 - 19:4:8 at page 169.

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Programs

  • Maple
    with(numtheory); bernoulli(n,x);
  • Mathematica
    t[n_, k_] := Numerator[ Coefficient[ BernoulliB[n, x], x, n-k]]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Aug 07 2012 *)
  • PARI
    v=[];for(n=0,6,v=concat(v,apply(numerator,Vec(bernpol(n)))));v \\ Charles R Greathouse IV, Jun 08 2012

Formula

B(m, x) = Sum_{n=0..m} 1/(n+1)*Sum_{k=0..n} (-1)^k*C(n, k)*(x+k)^m.

Extensions

More terms from James Sellers, Jan 10 2000

A048999 Triangle giving coefficients of (n+1)!*B_n(x), where B_n(x) is a Bernoulli polynomial, ordered by falling powers of x.

Original entry on oeis.org

1, 2, -1, 6, -6, 1, 24, -36, 12, 0, 120, -240, 120, 0, -4, 720, -1800, 1200, 0, -120, 0, 5040, -15120, 12600, 0, -2520, 0, 120, 40320, -141120, 141120, 0, -47040, 0, 6720, 0, 362880, -1451520, 1693440, 0, -846720, 0, 241920, 0, -12096, 3628800
Offset: 0

Views

Author

Keywords

Examples

			B_0=1  =>  a(0) = 1;
B_1(x)=x-1/2  =>  a(1..2) = 2, -1;
B_2(x)=x^2-x+1/6  =>  a(3..5) = 6, -6, 1;
B_3(x)=x^3-3*x^2/2+x/2  =>  a(6..9) = 24, -36, 12, 0;
B_4(x)=x^4-2*x^3+x^2-1/30  => a(10..14) = 120, -240, 120, 0, -4;
...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 9.62.

Crossrefs

Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

Programs

  • Mathematica
    row[n_] := (n+1)!*Reverse[ CoefficientList[ BernoulliB[n, x], x]]; Flatten[ Table[ row[n], {n, 0, 9}]] (* Jean-François Alcover, Feb 17 2012 *)
  • PARI
    P=Pol(t*exp(x*t)/(exp(t)-1)); for(i=0,15, z=polcoeff(P,i,t)*i!; print(z"  =>  ",(i+1)!*Vec(z)))  /* print B_n's and list of normalized coefficients */ \\ M. F. Hasler, Jun 21 2011

Formula

t*exp(x*t)/(exp(t)-1) = Sum_{n >= 0} B_n(x)*t^n/n!.
a(n,m) = [x^(n-m)]((n+1)!*B_n(x)), n>=0, m=0,...,n. - Wolfdieter Lang, Jun 21 2011

Extensions

Name clarified by adding 'Falling powers of x.' from Wolfdieter Lang, Jun 21 2011
Values corrected by inserting a(9),a(20),a(35)=0 by M. F. Hasler, Jun 21 2011

A129378 Row sums of coefficients of Bernoulli twin number polynomials.

Original entry on oeis.org

1, 1, 4, 20, 116, 744, 5160, 39360, 350784, 3749760, 42940800, 442713600, 4650877440, 109244298240, 2833294464000, -3487131648000, -2166903606067200, 51809012320665600, 6808619561103360000, -131306587205713920000, -26982365129174827008000, 595860034297401409536000
Offset: 0

Views

Author

Paul Curtz, Jun 08 2007

Keywords

Comments

The origin of the sequence are polynomials on pages 61 and 69 of the CCSA paper. The first few of the polynomials have been noted in the 1992 Gazette paper.
We construct Bernoulli twin numbers polynomials C(n,x) = Sum_{j=1..n} binomial(n-1,j-1)*B(j,x) where B(n,x) are the Bernoulli polynomials of A048998 and A048999 and where binomial(.,.) is the Pascal triangle A007318: C(0,x)=B(0,x); C(1,x)=B(1,x); C(2,x)=B(2,x)+B(1,x); C(3,x)=B(3,x)+2B(2,x)+B(1,x).
The triangle of coefficients [x^m] C(n,x) for rows n=0,1,2,.. and decreasing power m=n,...,0 along each row starts
1;
1, -1/2;
1, 0, -1/3;
1, 1/2, -1/2, -1/6;
The rightmost fraction in row n, that is, the absolute term C(n,0), is the Bernoulli twin number C(n) of A129826(n), i.e., C(n) = A129826(n)/(n+1)!.
If rows are multiplied by (n+1)!, the triangle becomes
1;
2, -1;
6, 0, -2;
24, 12, -12, -4;
120, 120, -60, -60, -4;
The sequence a(n) gives the row sums of this triangle. The sums of antidiagonals are 1, 2, 5, 24, 130, 828, 6056.... The first column of the inverse of the triangle is 1, 2, 3, 3, 0, (0 continued).

References

  • P. Curtz, Integration numerique ..., Note no. 12 CCSA (later CELAR), 1969. (See A129841, A129696.)
  • P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.

Crossrefs

Programs

  • Magma
    f:= func< n | n le 2 select (-1)^Floor((n+1)/2)/(n+1) else (-1)^n*BernoulliNumber(Floor(n - (1-(-1)^n)/2)) >;
    A129378:= func< n | n eq 0 select 1 else Factorial(n+1)*(f(n)+1) >;
    [A129378(n): n in [0..30]]; // G. C. Greubel, Feb 01 2024
    
  • Mathematica
    c[n_?EvenQ] := BernoulliB[n]; c[n_?OddQ] := -BernoulliB[n-1]; c[1] = -1/2; c[2] = -1/3; a[n_] := (n+1)!*(1+c[n]); a[0]=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 08 2012, after given formula *)
  • SageMath
    def f(n): return (-1)^((n+1)//2)/(n+1) if n<3 else (-1)^n*bernoulli(n-(n%2))
    def A129378(n): return 1 if n==0 else factorial(n+1)*(f(n)+1)
    [A129378(n) for n in range(31)] # G. C. Greubel, Feb 01 2024

Formula

a(n) = (n+1)!*(1 + C(n)) = A129826(n) + A000142(n+1), n>0.

Extensions

Edited and extended by R. J. Mathar, Aug 06 2008

A176295 Triangle read by rows, based on the two-variable g.f. exp(x*t)*(x*(1 - 2*exp(x)) - 2*exp(x))/(1 - exp(t)) (the second of two parts).

Original entry on oeis.org

-4, 4, 8, 2, -10, 0, 12, 0, 16, -32, -16, 32, -4, -4, 120, -120, -120, 120, 0, -96, -96, 960, -480, -864, 576, 80, 80, -1680, -1680, 8400, -1680, -6720, 3360, 0, 3840, 3840, -26880, -26880, 80640, 0, -57600, 23040, -6048, -6048, 120960, 120960, -423360, -423360, 846720, 120960, -544320, 181440
Offset: 0

Views

Author

Roger L. Bagula, Dec 07 2010

Keywords

Comments

A factor of 2*n!*(n+2)! was used to make the expansion coefficients all integers. This part is the b(i) part of the Sum_{j=0..n} (a(i) + b(i)*Exp(x) )*x^i, expansion.
Row sums are {8, 4, 0, -8, 0, 160, 0, -12096, 0, 2419200, 0,....}.

Examples

			Triangle begins as:
  -4,    4,     8;
   2,  -10,     0,     12;
   0,   16,   -32,    -16,     32;
  -4,   -4,   120,   -120,   -120,   120;
   0,  -96,   -96,    960,   -480,  -864,   576;
  80,   80, -1680,  -1680,   8400, -1680, -6720,   3360;
   0, 3840,  3840, -26880, -26880, 80640,     0, -57600, 23040;
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965, pp 296-298

Crossrefs

Cf. A048998, A138133 (the first part of the expansion).

Programs

  • Mathematica
    p[t_]:= Exp[x*t]*(x*(1 -2*Exp[x]) -2*Exp[x])/(1-Exp[t]); Table[Im[ CoefficientList[2*n!*(n+2)!*SeriesCoefficient[Series[p[t], {t,0,30}]/.Exp[x] -> I, n], x]], {n,0,12}]//Flatten

Extensions

Edited by N. J. A. Sloane, Jan 01 2011

A138133 Triangle read by rows, based on the two-variable g.f. exp(x*t)*(x*(1 - 2*exp(x)) - 2*exp(x))/(1 - exp(t)) (the first of two parts).

Original entry on oeis.org

0, 2, -4, 0, -1, 6, -6, 0, 0, -8, 24, -16, 0, 2, 0, -60, 120, -60, 0, 0, 48, 0, -480, 720, -288, 0, -40, 0, 840, 0, -4200, 5040, -1680, 0, 0, -1920, 0, 13440, 0, -40320, 40320, -11520, 0, 3024, 0, -60480, 0, 211680, 0, -423360, 362880, -90720, 0, 0, 241920, 0, -1612800, 0, 3386880, 0
Offset: 0

Views

Author

Roger L. Bagula, Dec 07 2010

Keywords

Comments

A factor of 2*n!*(n+2)! was used to make the coefficients integers.
This is the a(i) part of the Sum[(a(i)+b(i)*Exp(x))*x^i,{i,0,n}] expansion (see A176295 for the exponential part).
Row sums are {-2, -1, 0, 2, 0, -40, 0, 3024, 0, -604800, 0,....}.

Examples

			{0, 2, -4},
{0, -1, 6, -6},
{0, 0, -8, 24, -16},
{0, 2, 0, -60, 120, -60},
{0, 0, 48, 0, -480, 720, -288},
{0, -40, 0,840, 0, -4200, 5040, -1680},
{0, 0, -1920, 0, 13440, 0, -40320, 40320, -11520},
{0, 3024, 0, -60480, 0,211680, 0, -423360, 362880, -90720},
{0, 0, 241920, 0, -1612800, 0, 3386880, 0, -4838400, 3628800, -806400},
{0, -604800, 0, 11975040, 0, -39916800, 0, 55883520, 0, -59875200,39916800, -7983360},
{0, 0, -72576000, 0, 479001600, 0, -958003200,0, 958003200, 0, -798336000, 479001600, -87091200}
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965,pp 296-298

Crossrefs

Programs

  • Mathematica
    p[t_] = Exp[x*t](x*(1 - 2*Exp[x]) - 2*Exp[x])/(1 - Exp[t]);
    (* Exp part separated as Imaginary by a substitution*)
    a = Table[ Re[CoefficientList[2*n!*(n + 2)!*SeriesCoefficient[
          Series[p[t], {t, 0, 30}] /. Exp[x] -> I, n], x]], {n, 0, 10}];
    Flatten[a]

Formula

f(x,t)=exp(x*t)*(x*(1 - 2*exp(x)) - 2*exp(x))/(1 - exp(t))

Extensions

Edited by N. J. A. Sloane, Jan 01 2011
Showing 1-9 of 9 results.