A075725 Duplicate of A049407.
1, 2, 3, 5, 6, 8, 9, 12, 15, 17, 18, 21, 29, 30, 32, 39, 41, 42, 44, 48, 53, 54, 56, 60, 69
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[ n: n in [1..300] | IsPrime(n^2+n+1)] // Vincenzo Librandi, Nov 21 2010
Select[Range@ 216, PrimeQ[#^2 + # + 1] &] (* Michael De Vlieger, Mar 06 2017 *)
is(n)=isprime(n^2+n+1) \\ Charles R Greathouse IV, Jan 21 2014
[n: n in [0..1500] | IsPrime(s) where s is 1+&+[n^i: i in [1..11 by 2]]];
Select[Range[4000], PrimeQ[Total[#^Range[1, 11, 2]] + 1] &]
isok(n) = isprime(1 + n + n^3 + n^5 + n^7 + n^9 + n^11); \\ Michel Marcus, Jun 27 2014
i,n = var('i,n') [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,5))] # Bruno Berselli, Jun 27 2014
[n: n in [0..2000] | IsPrime(1 +n +n^3 +n^5 +n^7 +n^9 +n^11 +n^13 +n^15 +n^17 +n^19)]; // Vincenzo Librandi, Nov 12 2010
[n: n in [0..2000] | IsPrime(s) where s is 1+&+[n^i: i in [1..19 by 2]]]; // Vincenzo Librandi, Jun 28 2014
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19], Print[n]], {n, 1, 1000}] Select[Range[3000], PrimeQ[Total[#^Range[1, 19, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
is(n)=n==1 || isprime((n^21-n)/(n^2-1)+1) \\ Charles R Greathouse IV, Jul 02 2013
i,n = var('i,n') [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,9))] # Bruno Berselli, Jun 28 2014
[n: n in [0..2000] | IsPrime(s) where s is 1+&+[n^i: i in [1..23 by 2]]]; // Vincenzo Librandi, Jun 28 2014
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23], Print[n]], {n, 1, 1400}] Select[Range[3000], PrimeQ[Total[#^Range[1, 23, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
is(n)=n==1 || isprime((n^25-n)/(n^2-1)+1) \\ Charles R Greathouse IV, Jul 02 2013
i,n = var('i,n') [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,11))] # Bruno Berselli, Jun 27 2014
26 is a term because at s=4, n=26, n_s = 1 + n + n^s = 457003 is a prime.
[n: n in [0..1000] | IsPrime(s) where s is 1+n+n^4]; // Vincenzo Librandi, Jul 28 2014
Select[Range[1000], PrimeQ[1 + # + #^4] &] (* Vincenzo Librandi, Jul 28 2014 *)
for(n=1, 1000, if(isprime(1+n+n^4), print1(n",")))
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^7], AppendTo[a, n]], {n, 1, 1400}]; a Select[Range[1000],PrimeQ[1+#^2+#^4+#^6+#^7]&] (* Harvey P. Dale, Jan 15 2016 *)
is(n)=isprime(1+n^2+n^4+n^6+n^7) \\ Charles R Greathouse IV, Feb 17 2017
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^22 + n^23], AppendTo[a, n]], {n, 1, 1400}]; a Select[Range[1400],PrimeQ[Total[#^Range[2,22,2]]+1+#^23]&] (* Harvey P. Dale, Oct 04 2018 *)
is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^20+n^22+n^23) \\ Charles R Greathouse IV, Feb 17 2017
26^3 - 26 + 1 = 17551 is prime. So 26 is a member of this sequence.
Select[Range[250],PrimeQ[#^3-#+1]&] (* Harvey P. Dale, Dec 06 2017 *)
s=[]; for(n=1, 500, if(isprime(n^3-n+1), s=concat(s, n))); s \\ Colin Barker, Jan 27 2014
import sympy from sympy import isprime {print(n) for n in range(10**3) if isprime(n**3-n+1)}
15 is OK because at s=6, n=15, n_s = 1 + n + n^s = 11390641 is a prime.
[n: n in [0..500] | IsPrime(s) where s is 1+n+n^6]; // Vincenzo Librandi, Jul 28 2014
Select[Range[500], PrimeQ[1 + # + #^6] &] (* Vincenzo Librandi, Jul 28 2014 *)
for(n=1,10^3,if(isprime(n^6+n+1),print1(n,", "))) \\ Derek Orr, Feb 07 2015
Comments