A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0
Examples
On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010 From _Adi Dani_, Jun 04 2011: (Start) a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2]. a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4]. (End) . . o . o o o . o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o o . 2 10 24 44 70 - _Philippe Deléham_, Mar 30 2013
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16)
- Leo Tavares, Illustration: X Hexagons
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000567.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.
Programs
-
GAP
List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
-
Magma
[n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
-
Maple
seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
-
Mathematica
Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *) 2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
-
PARI
a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
-
Sage
[n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
Formula
O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
Comments