cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049684 a(n) = Fibonacci(2n)^2.

Original entry on oeis.org

0, 1, 9, 64, 441, 3025, 20736, 142129, 974169, 6677056, 45765225, 313679521, 2149991424, 14736260449, 101003831721, 692290561600, 4745030099481, 32522920134769, 222915410843904, 1527884955772561, 10472279279564025, 71778070001175616, 491974210728665289
Offset: 0

Views

Author

Keywords

Comments

This is the r=9 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Apparently, this sequence consists of those nonnegative integers k for which x*(x^2-1)*y*(y^2-1) = k*(k^2-1) has a solution in nonnegative integers x, y. If k = a(n), x = A000045(2*n-1) and y = A000045(2*n+1) are a solution. See A374375 for numbers k*(k^2-1) that can be written as a product of two or more factors of the form x*(x^2-1). - Pontus von Brömssen, Jul 14 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 27.
  • H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.

Crossrefs

First differences give A033890.
First differences of A103434.
Bisection of A007598 and A064841.
a(n) = A064170(n+2) - 1 = (1/5) A081070.

Programs

  • Mathematica
    Join[{a=0, b=1}, Table[c=7*b-1*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Fibonacci[Range[0, 40, 2]]^2 (* Harvey P. Dale, Mar 22 2012 *)
    Table[Fibonacci[n - 1] Fibonacci[n + 1] - 1, {n, 0, 40, 2}] (* Bruno Berselli, Feb 12 2015 *)
    LinearRecurrence[{8, -8, 1},{0, 1, 9},21] (* Ray Chandler, Sep 23 2015 *)
  • MuPAD
    numlib::fibonacci(2*n)^2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=fibonacci(2*n)^2
    
  • Sage
    [fibonacci(2*n)^2 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009

Formula

G.f.: (x+x^2) / ((1-x)*(1-7*x+x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 7*a(n-1) - a(n-2) + 2 = A001906(n)^2.
a(n) = (A000032(4*n)-2)/5. [This is in Koshy's book (reference under A065563) on p. 88, attributed to Lucas 1876.] - Wolfdieter Lang, Aug 27 2012
a(n) = 1/5*(-2 + ( (7+sqrt(45))/2 )^n + ( (7-sqrt(45))/2 )^n). - Ralf Stephan, Apr 14 2004
a(n) = 2*(T(n, 7/2)-1)/5 with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2)= A056854(n). - Wolfdieter Lang, Oct 18 2004
a(n) = F(2*n-1)*F(2*n+1)-1, see A064170 - Bruno Berselli, Feb 12 2015
a(n) = Sum_{i=1..n} F(4*i-2) for n>0. - Bruno Berselli, Aug 25 2015
From Peter Bala, Nov 20 2019: (Start)
Sum_{n >= 1} 1/(a(n) + 1) = (sqrt(5) - 1)/2.
Sum_{n >= 1} 1/(a(n) + 4) = (3*sqrt(5) - 2)/16. More generally, it appears that
Sum_{n >= 1} 1/(a(n) + F(2*k+1)^2) = ((2*k+1)*F(2*k+1)*sqrt(5) - Lucas(2*k+1))/ (2*F(2*k+1)*F(4*k+2)) for k = 0,1,2,....
Sum_{n >= 2} 1/(a(n) - 1) = (8 - 3*sqrt(5))/9. (End)
E.g.f.: (1/5)*(-2*exp(x) + exp((16*x)/(1 + sqrt(5))^4) + exp((1/2)*(7 + 3*sqrt(5))*x)). - Stefano Spezia, Nov 23 2019
Product_{n>=2} (1 - 1/a(n)) = phi^2/3, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
a(n) = A092521(n-1)+A092521(n). - R. J. Mathar, Nov 22 2024

Extensions

Better description and more terms from Michael Somos