cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376370 Square array read by antidiagonals: row n lists numbers that occur exactly n times in A036038 (or A050382 or A078760 or A318762), i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly n integer partitions (x_1, ..., x_k).

Original entry on oeis.org

2, 3, 10, 4, 12, 6, 5, 15, 20, 420, 7, 21, 30, 630, 120, 8, 24, 56, 840, 1680, 210, 9, 28, 60, 1980, 60060, 1260, 4324320, 11, 35, 90, 3003, 83160, 2520, 21621600, 7207200, 13, 36, 105, 7140, 180180, 5040, 24504480, 151351200, 720720
Offset: 1

Views

Author

Pontus von Brömssen, Sep 22 2024

Keywords

Comments

Row n lists numbers m such that A376369(m) = n.
In case there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
Any integer k >= 2 appears exactly once in the array.

Examples

			Array begins:
  n\k|       1         2         3         4         5          6          7          8
  ---+---------------------------------------------------------------------------------
  1  |       2         3         4         5         7          8          9         11
  2  |      10        12        15        21        24         28         35         36
  3  |       6        20        30        56        60         90        105        252
  4  |     420       630       840      1980      3003       7140       7560       9240
  5  |     120      1680     60060     83160    180180     240240     831600     900900
  6  |     210      1260      2520      5040     27720     166320    1441440    4084080
  7  | 4324320  21621600  24504480  43243200  75675600  116396280  367567200  908107200
  8  | 7207200 151351200 302702400 411863760 823727520 1816214400 2327925600 4655851200
		

Crossrefs

Cf. A036038, A050382, A078760, A318762, A325472 (complement of first row), A325593 (complement of the union of the first 2 rows), A376369, A376376 (first column).
First five rows are A376371, A376372, A376373, A376374, A376375.

A008480 Number of ordered prime factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 6, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 12, 1, 2, 3, 1, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 3, 3, 2, 6, 1, 5, 1, 2, 1, 12, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on the prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).
Multinomial coefficients in prime factorization order. - Max Alekseyev, Nov 07 2006
The Dirichlet inverse is given by A080339, negating all but the A080339(1) element in A080339. - R. J. Mathar, Jul 15 2010
Number of (distinct) permutations of the multiset of prime factors. - Joerg Arndt, Feb 17 2015
Number of not divisible chains in the divisor lattice of n. - Peter Luschny, Jun 15 2013

References

  • A. Knopfmacher, J. Knopfmacher, and R. Warlimont, "Ordered factorizations for integers and arithmetical semigroups", in Advances in Number Theory, (Proc. 3rd Conf. Canadian Number Theory Assoc., 1991), Clarendon Press, Oxford, 1993, pp. 151-165.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.

Crossrefs

Cf. A124010, record values and where they occur: A260987, A260633.
Absolute values of A355939.

Programs

  • Haskell
    a008480 n = foldl div (a000142 $ sum es) (map a000142 es)
                where es = a124010_row n
    -- Reinhard Zumkeller, Nov 18 2015
    
  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 26 2018
  • Mathematica
    Prepend[ Array[ Multinomial @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]
    (* Second program: *)
    a[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times @@ (ee!)]; Array[a, 101] (* Jean-François Alcover, Sep 15 2019 *)
  • PARI
    a(n)={my(sig=factor(n)[,2]); vecsum(sig)!/vecprod(apply(k->k!, sig))} \\ Andrew Howroyd, Nov 17 2018
    
  • Python
    from math import prod, factorial
    from sympy import factorint
    def A008480(n): return factorial(sum(f:=factorint(n).values()))//prod(map(factorial,f)) # Chai Wah Wu, Aug 05 2023
  • Sage
    def A008480(n):
        S = [s[1] for s in factor(n)]
        return factorial(sum(S)) // prod(factorial(s) for s in S)
    [A008480(n) for n in (1..101)]  # Peter Luschny, Jun 15 2013
    

Formula

If n = Product (p_j^k_j) then a(n) = ( Sum (k_j) )! / Product (k_j !).
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of primes.
a(p^k) = 1 if p is a prime.
a(A002110(n)) = A000142(n) = n!.
a(n) = A050382(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, May 26 2018
G.f. A(x) satisfies: A(x) = x + A(x^2) + A(x^3) + A(x^5) + ... + A(x^prime(k)) + ... - Ilya Gutkovskiy, May 10 2019
a(n) = C(k, n) for k = A001222(n) where C(k, n) is defined as the k-fold Dirichlet convolution of A001221(n) with itself, and where C(0, n) is the multiplicative identity with respect to Dirichlet convolution.
The average order of a(n) is asymptotic (up to an absolute constant) to 2A sqrt(2*Pi) log(n) / sqrt(log(log(n))) for some absolute constant A > 0. - Maxie D. Schmidt, May 28 2021
The sums of a(n) for n <= x and k >= 1 such that A001222(n)=k have asymptotic order of the form x*(log(log(x)))^(k+1/2) / ((2k+1) * (k-1)!). - Maxie D. Schmidt, Feb 12 2021
Other DGFs include: (1+P(s))^(-1) in terms of the prime zeta function for Re(s) > 1 where the + version weights the sequence by A008836(n), see the reference by Fröberg on P(s). - Maxie D. Schmidt, Feb 12 2021
The bivariate DGF (1+zP(s))^(-1) has coefficients a(n) / n^s (-1)^(A001221(n)) z^(A001222(n)) for Re(s) > 1 and 0 < |z| < 2 - Maxie D. Schmidt, Feb 12 2021
The distribution of the distinct values of the sequence for n<=x as x->infinity satisfy a CLT-type Erdős-Kac theorem analog proved by M. D. Schmidt, 2021. - Maxie D. Schmidt, Feb 12 2021
a(n) = abs(A355939(n)). - Antti Karttunen and Vaclav Kotesovec, Jul 22 2022
a(n) = A130675(n)/A112624(n). - Amiram Eldar, Mar 08 2024

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A376369 Number of nondecreasing tuples (x_1, ..., x_k) of positive integers (or integer partitions) such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) equals n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Pontus von Brömssen, Sep 22 2024

Keywords

Comments

a(n) is the number of occurrences of n in each of A036038, A050382, A078760, A318762, and A376367.
The sequence is unbounded. To see this, note that the sets of parts (1,1,1,4) and (2,2,3) of a partition can be exchanged without affecting the value of the multinomial coefficient, because 1+1+1+4 = 2+2+3 and 1!*1!*1!*4! = 2!*2!*3!. In particular, a((7*k)!/24^k) >= k+1 from the partitions 7*k = (3*j)*1 + j*4 + (2*(k-j))*2 + (k-j)*3 for 0 <= j <= k.

Examples

			a(6) = 3, because 6 can be written as a multinomial coefficient in 3 ways: 6 = 6!/(1!*5!) = 4!/(2!*2!) = 3!/(1!*1!*1!).
		

Crossrefs

A376367 Sorted multinomial coefficients greater than 1, including duplicates.

Original entry on oeis.org

2, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53
Offset: 1

Views

Author

Pontus von Brömssen, Sep 22 2024

Keywords

Comments

Sorted terms of A036038, A050382, A078760, or A318762, excluding 1 (which appears infinitely often).
The number k appears A376369(k) times.

Crossrefs

Formula

a(n) = A318762(A376379(n)).

A329889 a(n) is the unique integer k such that A108951(k) = A260633(n).

Original entry on oeis.org

1, 3, 6, 12, 5, 10, 20, 15, 30, 60, 28, 45, 21, 56, 90, 42, 180, 84, 63, 168, 70, 126, 140, 252, 189, 280, 504, 210, 378, 264, 1008, 420, 315, 220, 840, 630, 1680, 792, 330, 1260, 1584, 945, 1400, 660, 2520, 495, 1890, 882, 1320, 2100, 990, 1764, 2640, 4200, 1980, 3528, 1485, 2200, 8400, 2646, 3960, 6300, 2970, 5292, 7920, 3300, 5940, 2772
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A260633(n)).
Showing 1-5 of 5 results.