cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050526 Primes of form 5*2^n+1.

Original entry on oeis.org

11, 41, 641, 40961, 163841, 167772161, 2748779069441, 180143985094819841, 188894659314785808547841, 193428131138340667952988161, 850705917302346158658436518579420528641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 1999

Keywords

Comments

All terms are odd since if n is even, then 5*2^n+1 is divisible by 3. - Michele Fabbrini, Jun 06 2021

Crossrefs

For the corresponding exponents n see A002254.

Programs

  • GAP
    Filtered(List([1..270], n->5*2^n + 1), IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 5*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n, k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n, 5), n=1..127); # Martin Renner, Mar 05 2018
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=5*2^k+1), print1(p, ", "))); } \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A083575(A002254(n)). - Michel Marcus, Mar 29 2018

A002256 Numbers k such that 9*2^k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 17, 33, 42, 43, 63, 65, 67, 81, 134, 162, 206, 211, 366, 663, 782, 1305, 1411, 1494, 2297, 2826, 3230, 3354, 3417, 3690, 4842, 5802, 6937, 7967, 9431, 13903, 22603, 24422, 39186, 43963, 47003, 49902, 67943, 114854, 127003, 145247
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A050528.

Programs

  • Mathematica
    Select[Range[2019],PrimeQ[9*2^#+1]&] (* Metin Sariyar, Sep 21 2019 *)

Extensions

a(48) from Arkadiusz Wesolowski, Oct 22 2011
Added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013
Terms moved from Data to b-file, and more terms put in b-file, by Jeppe Stig Nielsen, Sep 21 2019

A300407 Primes of the form 17*2^n + 1.

Original entry on oeis.org

137, 557057, 2281701377, 38280596832649217, 3032901347000164747248857685080177164813336577, 240291200809860268823328460101036918152537809975084178304538443375796289537, 4031417378886400659867047414062478199819447786118941877597755244819503521544011777
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A002259.

Examples

			From _Muniru A Asiru_, Mar 29 2018: (Start)
137 is a member because 17 * 2^3 + 1 = 137 which is a prime.
557057 is a member because 17 * 2^15 + 1 = 557057 which is a prime.
2281701377 is a member because 17 * 2^27 + 1 = 2281701377 which is a prime.
... (End)
		

Crossrefs

Programs

  • GAP
    Filtered(List([1..270],n->17*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 17*2^n + 1]; // Vincenzo Librandi, Mar 07 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,17), n=1..267);
  • Mathematica
    Select[Table[17 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 07 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=17*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 28 2018

A300406 Primes of the form 13*2^n + 1.

Original entry on oeis.org

53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A032356.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->13*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,13), n=1..316);
  • Mathematica
    Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018

A300408 Primes of the form 19*2^n + 1.

Original entry on oeis.org

1217, 19457, 1337006139375617
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

Next term a(4) = 19*2^366 + 1 > 10^111.
For the corresponding exponents n see A032359.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->19*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,19), n=1..366);
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=19*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

A280004 Numbers k such that 9*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

67, 9431, 461081, 2543551
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 21 2017

Keywords

Comments

Fernando (Remark 5.2) shows that all terms are odd. - Jeppe Stig Nielsen, Jan 02 2025

Crossrefs

Showing 1-6 of 6 results.