cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A026474 a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j) or a(i)+a(j)+a(k) for 1<=i

Original entry on oeis.org

1, 2, 4, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 372
Offset: 1

Views

Author

Keywords

Comments

All h-Stohr sequences have formula: h terms 1,2,..,2^(n-1),..,2^(h-1) and then continue (2^h-1)(n-h)+1. - Henry Bottomley, Feb 04 2000

Crossrefs

Programs

Formula

Starts 1, 2, 4 then the numbers 7*(n-3)+1.
a(n) = 7*n-20 for n>3. a(n) = 2*a(n-1)-a(n-2) for n>5. G.f.: x*(1+x^2+2*x^3+3*x^4)/(1-x)^2. - Colin Barker, Sep 19 2012

Extensions

More terms from Eric W. Weisstein

A051039 4-Stohr sequence.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 46, 61, 76, 91, 106, 121, 136, 151, 166, 181, 196, 211, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 451, 466, 481, 496, 511, 526, 541, 556, 571, 586, 601, 616, 631, 646, 661, 676, 691, 706, 721, 736, 751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 15*n-59 for n>4. a(n) = 2*a(n-1)-a(n-2) for n>6. G.f.: x*(7*x^5+4*x^4+2*x^3+x^2+1)/(x-1)^2. - Colin Barker, Sep 19 2012

A003663 a(n) is smallest number != a(j) + a(k), j < k and a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 8, 10, 12, 15, 17, 19, 24, 26, 28, 33, 35, 37, 42, 44, 46, 51, 53, 55, 60, 62, 64, 69, 71, 73, 78, 80, 82, 87, 89, 91, 96, 98, 100, 105, 107, 109, 114, 116, 118, 123, 125, 127, 132, 134, 136, 141, 143, 145, 150, 152, 154, 159, 161, 163, 168, 170, 172, 177, 179
Offset: 1

Views

Author

Keywords

Comments

Numbers congruent to {1, 6, 8} mod 9 plus the number 12.

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,6,8,10,12,15,17,19,24]; [n le 9 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Feb 22 2018
  • Mathematica
    f[s_List, j_Integer] := Block[{k = s[[-1]] + 1, ss = Union[Plus @@@ Subsets[s, {j}]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#, 2] &, {1, 6}, 65] (* Robert G. Wilson v, Jul 05 2014 *)
    LinearRecurrence[{1,0,1,-1},{1,6,8,10,12,15,17,19,24},70] (* Harvey P. Dale, Jul 25 2018 *)

Formula

From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 9.
G.f.: x*(2*x^8 + x^5 - 3*x^4 + x^3 + 2*x^2 + 5*x + 1)/(x^4 - x^3 - x + 1). (End)

Extensions

Name clarified by David A. Corneth, Mar 13 2023

A062001 Table by antidiagonals of n-Stohr sequences: T(n,k) is least positive integer not the sum of at most n distinct terms in the n-th row from T(n,1) through to T(n,k-1).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 7, 4, 2, 1, 6, 10, 8, 4, 2, 1, 7, 13, 15, 8, 4, 2, 1, 8, 16, 22, 16, 8, 4, 2, 1, 9, 19, 29, 31, 16, 8, 4, 2, 1, 10, 22, 36, 46, 32, 16, 8, 4, 2, 1, 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1, 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1, 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Examples

			Array begins as:
  1, 2, 3, 4,  5,  6,  7,   8,   9, ... A000027;
  1, 2, 4, 7, 10, 13, 16,  19,  22, ... A033627;
  1, 2, 4, 8, 15, 22, 29,  36,  43, ... A026474;
  1, 2, 4, 8, 16, 31, 46,  61,  76, ... A051039;
  1, 2, 4, 8, 16, 32, 63,  94, 125, ... A051040;
  1, 2, 4, 8, 16, 32, 64, 127, 190, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 255, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
Antidiagonal triangle begins as:
   1;
   2,  1;
   3,  2,  1;
   4,  4,  2,  1;
   5,  7,  4,  2,   1;
   6, 10,  8,  4,   2,   1;
   7, 13, 15,  8,   4,   2,  1;
   8, 16, 22, 16,   8,   4,  2,  1;
   9, 19, 29, 31,  16,   8,  4,  2,  1;
  10, 22, 36, 46,  32,  16,  8,  4,  2, 1;
  11, 25, 43, 61,  63,  32, 16,  8,  4, 2, 1;
  12, 28, 50, 76,  94,  64, 32, 16,  8, 4, 2, 1;
  13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1;
		

Crossrefs

Diagonals include A000079, A000225, A033484, A036563, A048487.
A048483 can be seen as half this table.

Programs

  • Mathematica
    T[n_, k_]:= If[kG. C. Greubel, May 03 2022 *)
  • SageMath
    def A062001(n,k):
        if (kA062001(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, May 03 2022

Formula

If k <= n+1 then A(n, k) = 2^(k-1), while if k > n+1, A(n, k) = (2^n - 1)*(k - n) + 1 (array).
T(n, k) = A(k, n-k+1) (antidiagonals).
T(2*n-1, n) = A000079(n-1), n >= 1.
T(2*n, n) = A000079(n), n >= 1.
T(2*n+1, n) = A000225(n+1), n >= 1.
T(2*n+2, n) = A033484(n), n >= 1.
T(2*n+3, n) = A036563(n+3), n >= 1.
T(2*n+4, n) = A048487(n), n >= 1.
From G. C. Greubel, May 03 2022: (Start)
T(n, k) = (2^k - 1)*(n-2*k+1) + 1 for k < n/2, otherwise 2^(n-k).
T(2*n+5, n) = A048488(n), n >= 1.
T(2*n+6, n) = A048489(n), n >= 1.
T(2*n+7, n) = A048490(n), n >= 1.
T(2*n+8, n) = A048491(n), n >= 1.
T(2*n+9, n) = A139634(n), n >= 1.
T(2*n+10, n) = A139635(n), n >= 1.
T(2*n+11, n) = A139697(n), n >= 1. (End)

A244750 0-additive sequence: a(n) is the smallest number larger than a(n-1) which is not the sum of any subset of earlier terms, with initial values {0, 2, 3, 4}.

Original entry on oeis.org

0, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 1

Views

Author

Keywords

Examples

			a(5) cannot be 5=2+3. It cannot be 6=2+4. It cannot be 7=3+4, and becomes a(5)=8.
a(6) cannot be 9=2+3+4. It cannot be 10=2+8. It cannot be 11=3+8. It cannot be 12 = 4+8. It cannot be 13=2+3+8. It cannot be 14=2+4+8. It cannot be 15=3+4+8, and becomes a(6)=16.
		

References

  • R. K. Guy, "s-Additive sequences," preprint, 1994.

Crossrefs

Programs

  • Maple
    A244750:= proc(n)
        option remember;
        if n <= 4 then
            op(n,[0,2,3,4]);
        else
            prev := {seq(procname(k),k=1..n-1)} ;
            for a from procname(n-1)+1 do
                awrks := true ;
                for asub in combinat[choose](prev) do
                    if add(p,p=asub) = a then
                        awrks := false;
                        break;
                    end if;
                end do:
                if awrks then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    for n from 1 do
        print(A244750(n)) ;
    end do: # R. J. Mathar, Jul 12 2014
  • Mathematica
     f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {0, 2, 3, 4}, 16]

Extensions

Corrected by R. J. Mathar, Jul 12 2014

A244749 0-additive sequence: a(n) is the smallest number larger than a(n-1) that is not the sum of any subset of earlier terms, starting with initial values {2, 5}.

Original entry on oeis.org

2, 5, 6, 9, 10, 28, 29, 85, 86, 256, 257, 769, 770, 2308, 2309, 6925, 6926, 20776, 20777, 62329, 62330, 186988, 186989, 560965, 560966, 1682896, 1682897, 5048689, 5048690, 15146068, 15146069, 45438205, 45438206, 136314616, 136314617, 408943849, 408943850, 1226831548, 1226831549
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A003664.

Examples

			The numbers 11-27 are not in the sequence since some combination of the previous terms add to it. example 17=2+5+10.
The number 28 however is a term since no combination of the previous terms cannot be found which sum to 28.
		

References

  • R. K. Guy, "s-Additive sequences," preprint, 1994.

Crossrefs

Programs

  • Mathematica
    f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[ Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {2, 5}, 20] (* or *)
    b = LinearRecurrence[{4, -3}, {9, 28}, 18]; Join[{2, 5, 6}, Riffle[b, b + 1]]
    Join[{2, 5, 6},LinearRecurrence[{-1, 3, 3},{9, 10, 28},36]] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    Vec(x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2)/((x+1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, Jul 11 2014

Formula

a(2n) = 4a(2n - 2) - 3a(2n - 4) and a(2n +1) = a(2n) +1, for n>2.
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n>6. - Colin Barker, Jul 11 2014
G.f.: x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2) / ((x+1)*(3*x^2-1)). - Colin Barker, Jul 11 2014
Showing 1-6 of 6 results.