A051062 a(n) = 16*n + 8.
8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0
References
- Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.
Links
- Mia Boudreau, Table of n, a(n) for n = 0..10000
- Mihaly Bencze, Problem 11508, The American Mathematical Monthly, Vol. 117, N° 5, May 2010, p. 459.
- Milan Janjić, Two Enumerative Functions. [Wayback Machine link]
- Tanya Khovanova, Recursive Sequences.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[16*n+8: n in [0..50]]; // Wesley Ivan Hurt, Jun 01 2014
-
Maple
A051062:=n->16*n+8; seq(A051062(n), n=0..50); # Wesley Ivan Hurt, Jun 01 2014
-
Mathematica
Range[8, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *) Table[16n+8, {n,0,50}] (* Wesley Ivan Hurt, Jun 01 2014 *) LinearRecurrence[{2,-1},{8,24},60] (* or *) NestList[#+16&,8,60] (* Harvey P. Dale, Aug 18 2019 *)
-
PARI
a(n)=16*n+8 \\ Charles R Greathouse IV, May 09 2016
Formula
a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)
Comments