cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A334455 a(n) is unique integer k such that sigma(A051281(n)) = tau(A051281(n))^k (where sigma is the sum of divisors (A000203) and tau the number of divisors (A000005)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 5, 4, 6, 13, 5, 8, 17, 6, 9, 19, 10, 10, 7, 11, 11, 8, 8, 12, 12, 13, 9, 9, 7, 6, 15, 31, 8, 16, 11, 17, 12, 18, 18, 19, 13, 13, 13, 8, 10, 10, 11, 11, 22, 9, 12, 24, 10, 25, 17, 17, 13, 13, 14, 14, 14, 19, 12, 12, 15, 15, 61, 21, 16, 32, 13
Offset: 1

Views

Author

Rémy Sigrist, Nov 10 2020

Keywords

Examples

			For n = 7:
- A051281(7) = 889,
- sigma(889) = 1024,
- tau(889) = 4,
- 1024 = 4^5,
- so a(7) = 5.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = log(A000203(A051281(n))) / log(A000005(A051281(n))) for n > 1.

A349917 a(n) is the unique k such that A349838(n) = A051281(k).

Original entry on oeis.org

1, 2, 3, 6, 8, 4, 7, 11, 9, 14, 30, 5, 19, 29, 12, 22, 23, 33, 44, 15, 27, 28, 50, 17, 18, 45, 46, 53, 20, 21, 35, 47, 48, 24, 25, 37, 51, 63, 64, 91, 10, 26, 41, 42, 43, 57, 58, 71, 85, 59, 60, 61, 78, 79, 31, 65, 66, 82, 83, 100, 34, 69, 13, 36, 55, 56, 74
Offset: 1

Views

Author

Rémy Sigrist, Dec 05 2021

Keywords

Comments

This sequence is a permutation of the natural numbers.

Examples

			For n = 8:
- A349838(8) = 27559 = A051281(11),
- so a(8) = 11.
		

Crossrefs

Programs

  • PARI
    See Links section.

A046528 Numbers that are a product of distinct Mersenne primes (elements of A000668).

Original entry on oeis.org

1, 3, 7, 21, 31, 93, 127, 217, 381, 651, 889, 2667, 3937, 8191, 11811, 24573, 27559, 57337, 82677, 131071, 172011, 253921, 393213, 524287, 761763, 917497, 1040257, 1572861, 1777447, 2752491, 3120771, 3670009, 4063201, 5332341, 7281799, 11010027, 12189603
Offset: 1

Views

Author

Keywords

Comments

Or, numbers n such that the sum of the divisors of n is a power of 2, see A094502.
Or, numbers n such that the number of divisors of n and the sum of the divisors of n are both powers of 2.
n is a product of distinct Mersenne primes iff sigma(n) is a power of 2: see exercise in Sivaramakrishnan, or Shallit.
Sequence gives n > 1 such that sigma(n) = 2*phi(sigma(n)). - Benoit Cloitre, Feb 22 2002
The graph of this sequence shows a discontinuity at the 4097th number because there is a large relative gap between the 12th and 13th Mersenne primes, A000043. Other discontinuities can be predicted using A078426. - T. D. Noe, Oct 12 2006
Supersequence of A051281 (numbers n such that sigma(n) is a power of tau(n)). Conjecture: numbers n such that sigma(n) = tau(n)^(a/b), where a, b are integers >= 1. Example: sigma(93) = 128 = tau(93)^(7/2) = 4^(7/2). - Jaroslav Krizek, May 04 2013

Examples

			a(20) = 82677 = 3*7*31*127, whose sum of divisors is 131072 = 2^17;
a(27) = 1040257 = 127*8191, whose sum of divisors is 1048576 = 2^20.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 264 pp. 188, Ellipses Paris 2004.
  • R. Sivaramakrishnan, Classical Theory of Arithmetic Functions. Dekker, 1989.

Crossrefs

Cf. A000668, A000043, A056652 (product of Mersenne primes), A306204.

Programs

  • Maple
    mersennes:= [seq(numtheory:-mersenne([i]),i=1..10)]:
    sort(select(`<`,map(convert,combinat:-powerset(mersennes),`*`),numtheory:-mersenne([11]))); # Robert Israel, May 01 2016
  • Mathematica
    {1}~Join~TakeWhile[Times @@@ Rest@ Subsets@ # // Sort, Function[k, k <= Last@ #]] &@ Select[2^Range[0, 31] - 1, PrimeQ] (* Michael De Vlieger, May 01 2016 *)
  • PARI
    isok(n) = (n==1) || (ispower(sigma(n), , &r) && (r==2)); \\ Michel Marcus, Dec 10 2013

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A000668} (1 + 1/p) = 1.5855588879... (A306204) - Amiram Eldar, Jan 06 2021

Extensions

More terms from Benoit Cloitre, Feb 22 2002
Further terms from Jon Hart, Sep 22 2006
Entry revised by N. J. A. Sloane, Mar 20 2007
Three more terms from Michel Marcus, Dec 10 2013

A349007 a(1) = 1; for n > 1, a(n) is the largest number m such that sigma(m) = tau(m)^n or 0 if no such m exists.

Original entry on oeis.org

1, 3, 7, 2667, 27559, 677207307, 225735769, 698915267211, 29587412978599, 811637999283747, 16907189874529, 12200855315219510767697163, 254155396405925065290841, 878412242330556407427, 1074593611687774330088252281, 16138807601873739769, 37471768236581557067194399
Offset: 1

Views

Author

Jaroslav Krizek, Nov 05 2021

Keywords

Comments

See A051281 for numbers m such that sigma(m) = tau(m)^k where k = integer.
a(n) = 0 for n = 76, 81, ...

Examples

			a(4) = 2667 because 2667 is the largest number m such that sigma(m) = tau(m)^4; sigma(2667) = 4096 = tau(2667)^4  = 8^4.
		

Crossrefs

Subsequence of A051281.
Cf. A000005 (tau), A000203 (sigma), A334455, A349006.

Programs

  • PARI
    See Links section.

A289276 Numbers k such that phi(k) (the totient function A000010) is a power of the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 17, 18, 24, 30, 34, 63, 76, 85, 128, 136, 170, 257, 315, 333, 364, 380, 436, 444, 514, 640, 680, 972, 1285, 1542, 1820, 1824, 1836, 1875, 2142, 2220, 2907, 3285, 3488, 3796, 4369, 4788, 4860
Offset: 1

Views

Author

Keywords

Comments

A019434 is a subsequence. - David A. Corneth, Jun 30 2017
Is the frequency of e such that A000005(a(n))^e = A000010(a(n)) finite? - David A. Corneth, Jul 01 2017

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[2,5000],IntegerQ[Log[DivisorSigma[0,#],EulerPhi[#]]]&]] (* Harvey P. Dale, Aug 06 2017 *)
  • PARI
    ispowerof(n, k)= if(k==1, return(n==1)); while(n>=k, if(n%k!=0, return(0)); n\=k); n==1
    isa(n) = ispowerof(eulerphi(n),numdiv(n)) \\ Quick program, fast enough for early values.
    
  • PARI
    is(n) = if(n==1, return(1)); my(f = factor(n); phi = eulerphi(f), ndiv = numdiv(f), e = logint(phi, ndiv)); ndiv^e == phi \\ David A. Corneth, Jun 30 2017, changed per suggestion of Charles R Greathouse IV
    
  • PARI
    isA289276(n)= if(n==1, return(1)); my(phi = eulerphi(n), ndiv = numdiv(n), v = valuation(phi, ndiv)); ndiv^v == phi; \\ (A variant of above program). - Antti Karttunen, Jun 30 2017
    
  • PARI
    list(lim)=my(v=List([1])); forfactored(n=2,lim\1, my(phi = eulerphi(n), ndiv = numdiv(n)); if(ndiv^valuation(phi,ndiv) == phi, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 01 2017

A349006 a(1) = 1; for n > 1, a(n) is the smallest number m such that sigma(m) = tau(m)^n or 0 if no such m exists.

Original entry on oeis.org

1, 3, 7, 217, 31, 3937, 127, 57337, 253921, 917497, 3670009, 16252897, 8191, 61079603913818329, 1073602561, 4294434817, 131071, 66571993057, 524287, 1208766717309082486038529, 9222228542614937599, 17590038552577, 500367932999371587367, 281472829095937, 1125897758834689
Offset: 1

Views

Author

Jaroslav Krizek, Nov 05 2021

Keywords

Comments

See A051281 for numbers m such that sigma(m) = tau(m)^k where k = integer.
a(n) = 0 for n = 76, 81, ...

Examples

			a(4) = 217 because 217 is the smallest number m such that sigma(m) = tau(m)^4; sigma(217) = 256 = tau(217)^4  = 4^4.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A051281, A334455, A349007.

Programs

  • Magma
    [1] cat [Min([m: m in[2..10^6] | &+Divisors(m) eq #Divisors(m)^n]): n in [2..10]]
  • Mathematica
    Table[Block[{m = n}, While[#2 != #1^n & @@ DivisorSigma[{0, 1}, m], m++]; m], {n, 10}] (* Michael De Vlieger, Nov 05 2021 *)

A225239 Numbers n such that there is an integer k with the property that k^tau(n) = sigma(n).

Original entry on oeis.org

1, 3, 217, 862, 1177, 1207, 1219, 3937, 8743, 9481, 13822, 18137, 19567, 19849, 20057, 20257, 20299, 20437, 33607, 57337, 91847, 96217, 100579, 103897, 154969, 157921, 158623, 228889, 233047, 304117, 324817, 325579, 329057, 330529, 537817, 595417, 608287
Offset: 1

Views

Author

Jaroslav Krizek, May 04 2013

Keywords

Comments

Corresponding values of k: 1, 2, 4, 6, 6, 6, 6, 8, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 24, 24, 24, 24, 24, 28, 28, 28, ... (see A225369).
Conjecture: all terms are squarefree numbers.
Conjecture is false: p = (312^6 / 13) - 1 = 70955197267967 is prime, so sigma(9*p) = sigma(9)*sigma(p) = 13*(p+1) = 312^6 = 312^tau(9*p). - Charlie Neder, Oct 05 2018

Examples

			a(4) = 862 because sigma(862) = 1296 = 6^tau(862) = 6^4; k = 6.
		

Crossrefs

Cf. A000005 (tau(n): number of divisors of n).
Cf. A000203 (sigma(n): sum of divisors of n).
Cf. A051281 (sigma(n) is a power of tau(n)), A225369.

Programs

  • PARI
    c=1; write("b225239.txt", c " " 1); for(n=2, 1943881801, s=sigma(n); if(ispower(s), nd=numdiv(n); r=round(sqrtn(s, nd)); if(r^nd==s, c++; write("b225239.txt", c " " n)))) /* Donovan Johnson, May 05 2013 */
    
  • PARI
    isok(n) = if (n==1, return(1)); my(s=sigma(n)); if(ispower(s), my(nd=numdiv(n)); r=sqrtnint(s, nd); (r^nd==s);); \\ Michel Marcus, Feb 19 2020

A286628 a(n) = exponent of the highest power of A000005(n) (number of divisors of n) dividing A000203(n) (sum of divisors of n), a(1) = 1.

Original entry on oeis.org

1, 0, 2, 0, 1, 1, 3, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 0, 0, 0, 1, 0, 1, 1, 5, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 4, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 0, 0, 1, 1, 2, 1, 2, 1, 3, 0, 1, 0, 0, 0, 2, 1, 4, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 3, 2, 1, 1, 1, 0, 1, 0, 1, 1, 3, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 30 2017

Keywords

Comments

a(1) = 1 by convention.

Examples

			A000005(6) = 4, A000203(6) = 12, 4^1 is the highest power of 4 which divides 12, thus a(6) = 1.
A000005(7) = 2, A000203(7) = 8, 2^3 is the highest power of 2 which divides 8, thus a(7) = 3.
A000005(8) = 4, A000203(8) = 15, 4^0 = 1 is the highest power of 4 which divides 15, thus a(8) = 0.
		

Crossrefs

Cf. A049642 (positions of zeros), A003601 (of nonzeros).

Programs

  • PARI
    A286628(n) = if(1==n,n,valuation(sigma(n), numdiv(n)));

Formula

a(n) = A286561(A000203(n), A000005(n)).

A349838 Irregular table read by rows; the n-th row contains in ascending order the integers m > 1 such that sigma(m) = tau(m)^n; the first row contains 1.

Original entry on oeis.org

1, 3, 7, 217, 2667, 31, 889, 27559, 3937, 172011, 677207307, 127, 1777447, 225735769, 57337, 11010027, 12189603, 3612185689, 698915267211, 253921, 113770279, 116522119, 29587412978599, 917497, 1040257, 931892355289, 954432676729, 811637999283747
Offset: 1

Views

Author

Rémy Sigrist, Dec 01 2021

Keywords

Comments

The n-th row has A349837(n) terms.
As a flat sequence, this is a permutation of A051281.

Examples

			Table begins:
    1;
    3;
    7;
    217, 2667;
    31, 889, 27559;
    3937, 172011, 677207307;
    127, 1777447, 225735769;
    57337, 11010027, 12189603, 3612185689, 698915267211;
    253921, 113770279, 116522119, 29587412978599;
    917497, 1040257, 931892355289, 954432676729, 811637999283747;
    ...
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = A349006(n) when A349837(n) > 0.
T(n, A349837(n)) = A349007(n) when A349837(n) > 0.
A334455(T(n, k)) = n.

A219668 Numbers m for which sigma(m) - m = tau(m)^k for some integer k > 0.

Original entry on oeis.org

4, 26, 56, 90, 122, 568, 2042, 8186, 32762, 37432, 68652, 299576, 2097146, 8388602, 19173944, 33554426, 67751984, 78536544824, 306296525088, 15640174780344, 39998905951528, 120948840863188
Offset: 1

Views

Author

Zdenek Cervenka, Nov 27 2012

Keywords

Comments

39614081257132168796771975162 is also a term. - Donovan Johnson, Nov 28 2012
19495118728903626376363904 = 2^7*152305615069559581065343 is a term. - Martin Ehrenstein, Jul 31 2023

Crossrefs

Cf. A051281.

Programs

  • Mathematica
    f[n_] := FullSimplify[Log[DivisorSigma[1, n] - n]/Log[DivisorSigma[0, n]]]; Select[Range[2, 1000], IntegerQ[f[#]] && f[#] > 0 &] (* T. D. Noe, Nov 27 2012 *)

Extensions

a(16)-a(17) from Donovan Johnson, Nov 28 2012
a(18)-a(22) from Martin Ehrenstein, Jul 31 2023
Showing 1-10 of 12 results. Next