A051708 Number of ways to move a chess rook from the lower left corner to square (n,n), with the rook moving only up or right.
1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, 2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306, 122002082809110, 1065855419418690, 9327252391907790, 81744134786314410, 717367363052796678, 6303080714967178962
Offset: 1
Examples
G.f. = x + 2*x^2 + 14*x^3 + 106*x^4 + 838*x^5 + 6802*x^6 + 56190*x^7 + ...
References
- Posting to newsgroup rec.puzzles, Dec 03 1999 by Nick Wedd (Nick(AT)maproom.co.uk).
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1000 (first 325 terms from Alois P. Heinz)
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- "flawr", (Programming Puzzles & Code Golf Stack Exchange user), Partitioning the grid into triangles
- E. Yu Jin and M. E. Nebel, A combinatorial proof of the recurrence for rook paths, Electronic J. Comb. 19 (2012) #P57.
- M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010.
- Alexander R. Povolotsky, MathOverflow, Are two formulas related to A051708 equivalent?, 2025.
- Nick Webb, Thread in newsgroup rec.puzzles, Dec 03 1999. [Broken link]
Crossrefs
Programs
-
GAP
a:=[1,2];; for n in [3..25] do a[n]:=((10*n-16)*a[n-1]-(9*n-27)*a[n-2])/(n-1); od; a; # Muniru A Asiru, Nov 30 2018
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( ((x*(1-x))/(Sqrt(1-10*x+9*x^2))+x)/2 )); // G. C. Greubel, Dec 01 2018 -
Maple
a:= proc(n) option remember; `if`(n<3, n, ((10*n-16)*a(n-1)-(9*n-27)*a(n-2))/(n-1)) end: seq(a(n), n=1..30); # Alois P. Heinz, Jul 21 2012
-
Mathematica
CoefficientList[Series[(9*x^2 - Sqrt[9*x^2-10*x+1]*x-x) / (2*(9*x-1)), {x,0,20}],x] // Rest (* Jean-François Alcover, Mar 30 2011, after g.f. given by Ralf Stephan *) RecurrenceTable[{a[1]==1,a[2]==2,a[n]==((10n-16)a[n-1]-(9n-27)a[n-2])/ (n-1)},a,{n,30}] (* Harvey P. Dale, Sep 28 2013 *)
-
Maxima
a(n):=sum(binomial(n-1,n-i)*sum(binomial(k+i,i)*binomial(n-1,n-k),k,0,n),i,0,n); /* Vladimir Kruchinin, Apr 20 2015 */
-
PARI
{a(n) = if( n<1, 0, n--; polcoeff( 1/2 + (1 - x) / (2 * sqrt( 1 - 10*x + 9*x^2 + x * O(x^n) ) ), n ) )} /* Michael Somos, Jan 08 2011 */
-
PARI
a(n) = n--; sum(i=0,n, binomial(n-1, n-i)*sum(k=0, n, binomial(k+i, i)*binomial(n-1, n-k))); \\ Michel Marcus, Apr 20 2015
Formula
G.f.: ((x*(1-x))/(sqrt(1-10*x+9*x^2)) + x)/2. - Ralf Stephan, Mar 23 2004; confirmed by Martin J. Erickson, Oct 05 2007
D-finite with recurrence a(1)=1; a(2)=2; a(n) = ((10*n-16)*a(n-1) - (9*n-27)*a(n-2)) / (n-1), for n >= 3. - Martin J. Erickson (erickson(AT)truman.edu), Nov 12 2007
a(n) is asymptotic to (sqrt(2)/27)*9^n/(sqrt(Pi*n)). - Martin J. Erickson, Nov 09 2007
G.f.: A(x) satisfies 2 * x^3 = (1 - 9*x) * A(x) * (A(x) - x). - Michael Somos, Jan 08 2011
a(n+1) = Sum_{i=0..n} (C(n-1,n-i)*Sum_{k=0..n} (C(k+i,i)*C(n-1,n-k))). - Vladimir Kruchinin, Apr 20 2015
a(n) = Sum_{k=0..n} (k+1)*C(n-2,k-1)*hypergeom([2+k,2-n],[2],-1) for n >= 2. - Peter Luschny, Apr 20 2015
a(n) = ((-1)^(n-1) * 4^(n-1)) / (48*(n-1)*n) * ( -(4*(n-1)^2 + 16*(n-1) + 28)*JacobiP(n-2, -2*(n-1)-1, 2, -1/2) + (n+2)*(n-2)*JacobiP(n-3, -2*(n-1), 3, -1/2) ) for n > 1. - Alexander R. Povolotsky, Apr 26 2025
Extensions
More terms from James Sellers, Dec 08 1999
Comments