A051890 a(n) = 2*(n^2 - n + 1).
2, 2, 6, 14, 26, 42, 62, 86, 114, 146, 182, 222, 266, 314, 366, 422, 482, 546, 614, 686, 762, 842, 926, 1014, 1106, 1202, 1302, 1406, 1514, 1626, 1742, 1862, 1986, 2114, 2246, 2382, 2522, 2666, 2814, 2966, 3122, 3282, 3446, 3614, 3786, 3962
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- William G. Brown, On Hamiltonian regular graphs of girth six, J. London Math. Soc., 42 (1967): 514-520.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 10.
- Parabola, Problem #Q607, vol. 20, no. 2, 1984, p. 27.
- Eric Weisstein's World of Mathematics, Plane Division by Ellipses
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), this sequence (g=6), A188377 (g=7).
Programs
-
GAP
List([0..50], n-> 2*(n^2-n+1)); # G. C. Greubel, Feb 21 2019
-
Magma
[2*(n^2-n+1): n in [0..50]]; // G. C. Greubel, Feb 21 2019
-
Maple
A051890 := n->2*(n^2-n+1); seq(A051890(n) = n=0..50);
-
Mathematica
Table[2*(n^2-n+1), {n, 0, 50}] (* G. C. Greubel, Jul 14 2017 *) LinearRecurrence[{3,-3,1},{2,2,6},50] (* Harvey P. Dale, Jul 14 2025 *)
-
PARI
a(n)=2*(n^2-n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[2*(n^2-n+1) for n in (0..50)] # G. C. Greubel, Feb 21 2019
Formula
a(n) = 4*binomial(n, 2) + 2. - Francois Jooste (phukraut(AT)hotmail.com), Mar 05 2003
For n > 2, nearest integer to (Sum_{k>=n} 1/k^3)/(Sum_{k>=n} 1/k^5). - Benoit Cloitre, Jun 12 2003
a(n) = 2*A002061(n). - Jonathan Vos Post, Jun 19 2005
a(n) = 4*n + a(n-1) - 4 for n > 0, a(0)=2. - Vincenzo Librandi, Aug 06 2010
a(n) = 2*(n^2 - n +1) = 2*(n-1)^2 + 2(n-1) + 2 = 222 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
G.f.: 2*(1 - 2*x + 3*x^2)/(1 - x)^3. - Colin Barker, Jan 10 2012
E.g.f.: 2*(x^2 + 1)*exp(x). - G. C. Greubel, Jul 14 2017
Comments