A051945 a(n) = C(n)*(5*n+1) where C(n) = Catalan numbers (A000108).
1, 6, 22, 80, 294, 1092, 4092, 15444, 58630, 223652, 856596, 3292016, 12688732, 49031400, 189885240, 736808220, 2863971270, 11149451940, 43465121700, 169657266240, 662976162420, 2593424304120, 10154564564040, 39794915183400, 156078401826204, 612605246582952
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Magma
[Catalan(n)*(5*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
-
Magma
R
:=PowerSeriesRing(Rationals(),29); (Coefficients(R!((2-3*x-2*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020 -
Mathematica
Table[CatalanNumber[n](5n+1),{n,0,30}] (* Harvey P. Dale, Jul 27 2020 *)
-
PARI
a(n) = (5*n+1)*binomial(2*n, n)/(n+1) \\ Michel Marcus, Jul 12 2013
Formula
(n+1)*(5n-4)*a(n) - 2*(5n+1)(2n-1)*a(n-1) = 0. - R. J. Mathar, Jul 09 2012
G.f.: (2 - 3*x - 2*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) ~ 4^n * 5/sqrt(Pi*n). (End)
E.g.f.: exp(2*x)*((1 + 5*x)*BesselI(0, 2*x) - BesselI(1, 2*x) - 5*x*BesselI(2, 2*x)). - Stefano Spezia, Aug 29 2025
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 04 2020