cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051945 a(n) = C(n)*(5*n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 6, 22, 80, 294, 1092, 4092, 15444, 58630, 223652, 856596, 3292016, 12688732, 49031400, 189885240, 736808220, 2863971270, 11149451940, 43465121700, 169657266240, 662976162420, 2593424304120, 10154564564040, 39794915183400, 156078401826204, 612605246582952
Offset: 0

Views

Author

Barry E. Williams, Dec 20 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=5 of A330965.

Programs

  • Magma
    [Catalan(n)*(5*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),29); (Coefficients(R!((2-3*x-2*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](5n+1),{n,0,30}] (* Harvey P. Dale, Jul 27 2020 *)
  • PARI
    a(n) = (5*n+1)*binomial(2*n, n)/(n+1)  \\ Michel Marcus, Jul 12 2013
    

Formula

(n+1)*(5n-4)*a(n) - 2*(5n+1)(2n-1)*a(n-1) = 0. - R. J. Mathar, Jul 09 2012
G.f.: (2 - 3*x - 2*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 4*binomial(2*n, n-1) = A000984(n) + 4*A001791(n).
a(n) ~ 4^n * 5/sqrt(Pi*n). (End)
E.g.f.: exp(2*x)*((1 + 5*x)*BesselI(0, 2*x) - BesselI(1, 2*x) - 5*x*BesselI(2, 2*x)). - Stefano Spezia, Aug 29 2025

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 04 2020