cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A330965 Array read by descending antidiagonals: A(n,k) = (1 + k*n)*C(n) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 10, 20, 14, 1, 5, 14, 35, 70, 42, 1, 6, 18, 50, 126, 252, 132, 1, 7, 22, 65, 182, 462, 924, 429, 1, 8, 26, 80, 238, 672, 1716, 3432, 1430, 1, 9, 30, 95, 294, 882, 2508, 6435, 12870, 4862, 1, 10, 34, 110, 350, 1092, 3300, 9438, 24310, 48620, 16796
Offset: 0

Views

Author

Andrew Howroyd, Jan 04 2020

Keywords

Examples

			Array begins:
====================================================
n\k |   0    1    2    3     4     5     6     7
----+-----------------------------------------------
  0 |   1    1    1    1     1     1     1     1 ...
  1 |   1    2    3    4     5     6     7     8 ...
  2 |   2    6   10   14    18    22    26    30 ...
  3 |   5   20   35   50    65    80    95   110 ...
  4 |  14   70  126  182   238   294   350   406 ...
  5 |  42  252  462  672   882  1092  1302  1512 ...
  6 | 132  924 1716 2508  3300  4092  4884  5676 ...
  7 | 429 3432 6435 9438 12441 15444 18447 21450 ...
  ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Mathematica
    A330965[n_, k_] := CatalanNumber[n]*(k*n + 1);
    Table[A330965[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 24 2025 *)
  • PARI
    T(n, k)={(1 + k*n)*binomial(2*n,n)/(n+1)}

Formula

A(n,k) = (1 + k*n)*binomial(2*n,n)/(n+1).
A(n,k) = 2*(k*n+1)*(2*n-1)*A(n-1,k)/((n+1)*(k*n-k+1)) for n > 0.
G.f. of column k: (k - 1 - (2*k-4)*x - (k-1)*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)).

A050476 a(n) = C(n)*(6*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 7, 26, 95, 350, 1302, 4884, 18447, 70070, 267410, 1024556, 3938662, 15184876, 58689100, 227327400, 882230895, 3429693990, 13353413370, 52062618300, 203235266850, 794258570820, 3107215911540, 12167180964120, 47685286297350, 187036101361980, 734153906619252, 2883674432327864, 11333968799308652
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=6 of A330965.

Programs

  • Magma
    [Catalan(n)*(6*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (5-8*x-5*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](6n+1),{n,0,20}] (* Harvey P. Dale, Nov 05 2011 *)

Formula

5*(n+1)*a(n) + 2*(-14*n-1)*a(n-1) + 16*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 04 2015
G.f.: (5 - 8*x - 5*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 5*binomial(2*n, n-1) = A000984(n) + 5*A001791(n).
a(n) ~ 4^n * 6/sqrt(Pi*n). (End)

A050477 a(n) = C(n)*(7*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 8, 30, 110, 406, 1512, 5676, 21450, 81510, 311168, 1192516, 4585308, 17681020, 68346800, 264769560, 1027653570, 3995416710, 15557374800, 60660114900, 236813267460, 925540979220, 3621007518960, 14179797364200, 55575657411300, 217993800897756, 855702566655552
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=7 of A330965.

Programs

  • Magma
    [Catalan(n)*(7*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),27); (Coefficients(R!( (3-5*x-3*Sqrt(1-4*x))/(x*Sqrt(1 - 4*x))) )); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](7n+1),{n,0,30}] (* Harvey P. Dale, Jun 01 2024 *)
  • PARI
    a(n) = (7*n+1) * binomial(2*n,n)/(n+1) \\ Michel Marcus, Jul 24 2013
    

Formula

3*(n+1)*a(n) + (-17*n-1)*a(n-1) + 10*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 13 2015
-(n+1)*(7*n-6)*a(n) + 2*(7*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Feb 13 2015
G.f.: (3 - 5*x - 3*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 6*binomial(2*n, n-1) = A000984(n) + 6*A001791(n).
a(n) ~ 4^n * 7/sqrt(Pi*n). (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2020

A050478 a(n) = C(n)*(8*n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 9, 34, 125, 462, 1722, 6468, 24453, 92950, 354926, 1360476, 5231954, 20177164, 78004500, 302211720, 1173076245, 4561139430, 17761336230, 69257611500, 270391268070, 1056823387620
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=8 of A330965.

Programs

  • Magma
    [Catalan(n)*(8*n+1):n in [0..30]]; // Vincenzo Librandi, Jan 27 2013
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (7-12*x-7*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](8n+1),{n,0,20}] (* Harvey P. Dale, May 20 2012 *)

Formula

-(n+1)*(8*n-7)*a(n) + 2*(8*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
G.f.: (7 - 12*x - 7*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 7*binomial(2*n, n-1) = A000984(n) + 7*A001791(n).
a(n) ~ 2^(2*n+3)/sqrt(Pi*n). (End)

A050479 a(n) = C(n)*(9*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 10, 38, 140, 518, 1932, 7260, 27456, 104390, 398684, 1528436, 5878600, 22673308, 87662200, 339653880, 1318498920, 5126862150, 19965297660, 77855108100, 303969268680, 1188105796020, 4648590733800, 18205030164360, 71356399639200, 279909199969308, 1098799886728152
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=9 of A330965.

Programs

  • Magma
    [Catalan(n)*(9*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (4-7*x-4*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    A050479[n_] := CatalanNumber[n]*(9*n + 1);
    Array[A050479, 30, 0] (* Paolo Xausa, Aug 24 2025 *)

Formula

4*(n+1)*a(n) + (-23*n-1)*a(n-1) + 14*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 13 2015
-(n+1)*(9*n-8)*a(n) + 2*(9*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Feb 13 2015
G.f.: (4 - 7*x - 4*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 8*binomial(2*n, n-1) = A000984(n) + 8*A001791(n).
a(n) ~ 4^n * 9/sqrt(Pi*n). (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020

A052204 a(n) = (5n+1)*C(4n,n)/(3n+1).

Original entry on oeis.org

1, 6, 44, 352, 2940, 25194, 219604, 1937520, 17250012, 154663960, 1394538288, 12631852688, 114858935204, 1047772373340, 9584557428600, 87885886492320, 807564936805020, 7434289153896264, 68551275793965328, 633038816547052800
Offset: 0

Views

Author

Barry E. Williams, Jan 28 2000

Keywords

Crossrefs

Programs

  • Magma
    [(5*n+1)*Binomial(4*n,n)/(3*n+1) : n in [0..20]]; // Wesley Ivan Hurt, Aug 10 2016
    
  • Maple
    A052204:=n->(5*n+1)*binomial(4*n,n)/(3*n+1): seq(A052204(n), n=0..20); # Wesley Ivan Hurt, Aug 10 2016
  • Mathematica
    Table[(5 n + 1) Binomial[4 n, n]/(3 n + 1), {n, 0, 20}] (* Wesley Ivan Hurt, Aug 10 2016 *)
  • PARI
    for(n=0,25, print1((5*n+1)*binomial(4*n,n)/(3*n+1), ", ")) \\ G. C. Greubel, Feb 16 2017

Formula

G.f.: (2*g-1)*g/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
Conjecture: 6*n*(3*n-1)*(3*n+1)*a(n) + (-809*n^3 + 1444*n^2 - 1505*n + 582)*a(n-1) + 88*(4*n-5)*(4*n-7)*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Sep 29 2012
a(n) ~ 5*2^(8*n+1/2)*3^(-3*n-3/2)/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 10 2016

Extensions

More terms from James Sellers, Jan 31 2000
Showing 1-6 of 6 results.