A051945
a(n) = C(n)*(5*n+1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 6, 22, 80, 294, 1092, 4092, 15444, 58630, 223652, 856596, 3292016, 12688732, 49031400, 189885240, 736808220, 2863971270, 11149451940, 43465121700, 169657266240, 662976162420, 2593424304120, 10154564564040, 39794915183400, 156078401826204, 612605246582952
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(5*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),29); (Coefficients(R!((2-3*x-2*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n](5n+1),{n,0,30}] (* Harvey P. Dale, Jul 27 2020 *)
-
a(n) = (5*n+1)*binomial(2*n, n)/(n+1) \\ Michel Marcus, Jul 12 2013
A051944
a(n) = C(n)*(4*n+1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 5, 18, 65, 238, 882, 3300, 12441, 47190, 179894, 688636, 2645370, 10192588, 39373700, 152443080, 591385545, 2298248550, 8945490510, 34867625100, 136079265630, 531693754020, 2079632696700, 8141948163960, 31904544069450, 125120702290428, 491056586546652
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(4*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (3 - 4*x - 3*Sqrt(1 - 4*x))/(2*x*Sqrt(1 - 4*x)))) ); // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n](4n+1),{n,0,30}] (* Harvey P. Dale, Feb 21 2022 *)
-
{a(n)=if(n<0, 0, (4*n+1)*binomial(2*n,n)/(n+1))} /* Michael Somos, Sep 17 2006 */
A050476
a(n) = C(n)*(6*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 7, 26, 95, 350, 1302, 4884, 18447, 70070, 267410, 1024556, 3938662, 15184876, 58689100, 227327400, 882230895, 3429693990, 13353413370, 52062618300, 203235266850, 794258570820, 3107215911540, 12167180964120, 47685286297350, 187036101361980, 734153906619252, 2883674432327864, 11333968799308652
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(6*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (5-8*x-5*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n](6n+1),{n,0,20}] (* Harvey P. Dale, Nov 05 2011 *)
A050489
a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A050477
a(n) = C(n)*(7*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 8, 30, 110, 406, 1512, 5676, 21450, 81510, 311168, 1192516, 4585308, 17681020, 68346800, 264769560, 1027653570, 3995416710, 15557374800, 60660114900, 236813267460, 925540979220, 3621007518960, 14179797364200, 55575657411300, 217993800897756, 855702566655552
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(7*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),27); (Coefficients(R!( (3-5*x-3*Sqrt(1-4*x))/(x*Sqrt(1 - 4*x))) )); // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n](7n+1),{n,0,30}] (* Harvey P. Dale, Jun 01 2024 *)
-
a(n) = (7*n+1) * binomial(2*n,n)/(n+1) \\ Michel Marcus, Jul 24 2013
A050478
a(n) = C(n)*(8*n+1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 9, 34, 125, 462, 1722, 6468, 24453, 92950, 354926, 1360476, 5231954, 20177164, 78004500, 302211720, 1173076245, 4561139430, 17761336230, 69257611500, 270391268070, 1056823387620
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(8*n+1):n in [0..30]]; // Vincenzo Librandi, Jan 27 2013
-
R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (7-12*x-7*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n](8n+1),{n,0,20}] (* Harvey P. Dale, May 20 2012 *)
A050479
a(n) = C(n)*(9*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 10, 38, 140, 518, 1932, 7260, 27456, 104390, 398684, 1528436, 5878600, 22673308, 87662200, 339653880, 1318498920, 5126862150, 19965297660, 77855108100, 303969268680, 1188105796020, 4648590733800, 18205030164360, 71356399639200, 279909199969308, 1098799886728152
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(9*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
-
R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (4-7*x-4*Sqrt(1-4*x))/(x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
-
A050479[n_] := CatalanNumber[n]*(9*n + 1);
Array[A050479, 30, 0] (* Paolo Xausa, Aug 24 2025 *)
A050490
a(n) = C(n)*(11n+1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 12, 46, 170, 630, 2352, 8844, 33462, 127270, 486200, 1864356, 7171892, 27665596, 106977600, 414538200, 1609344270, 6258307590, 24373220520, 95050101300, 371125269900, 1450670612820, 5676173948640, 22230262964520, 87137141867100, 341824599040860, 1341897206800752
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A050491
a(n) = C(n)*(12n+1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 13, 50, 185, 686, 2562, 9636, 36465, 138710, 529958, 2032316, 7818538, 30161740, 116635300, 451980360, 1754766945, 6824030310, 26577181950, 103647597900, 404703270510, 1581953021220, 6189965556060, 24242879364600, 95027512981050, 372782298576636, 1463445866837052
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[Catalan(n)*(12*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
-
Table[CatalanNumber[n] * (12*n + 1), {n, 0, 25}] (* Amiram Eldar, Jul 08 2023 *)
Showing 1-9 of 9 results.