A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
Offset: 1
Examples
195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
References
- Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
- D. R. Kaprekar, Multidigital Numbers, Scripta Math., Vol. 21 (1955), p. 27.
- Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
- Robert E. Kennedy, Terry A. Goodman, and Clarence H. Best, Mathematical Discovery and Niven Numbers, The MATYC Journal, Vol. 14, No. 1 (1980), pp. 21-25.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 381.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..11872 (all a(n) <= 100000)
- Bob Albrecht, Don Albers, and Jim Conlan, Problem #22 Two-digit Niven numbers, Programming Problems, Recreational Computing Magazine, Vol. 9, No. 1, Issue 46 (1980), p. 59.
- Curtis N. Cooper and Robert E. Kennedy, On an asymptotic formula for the Niven numbers, International Journal of Mathematics and Mathematical Sciences, Vol. 8, No. 3 (1985), pp. 537-543.
- Curtis N. Cooper and Robert E. Kennedy, Chebyshev's inequality and natural density, Amer. Math. Monthly 96 (1989), no. 2, 118-124.
- Paul Dalenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166.
- Jean-Marie De Koninck and Nicolas Doyon, Large and Small Gaps Between Consecutive Niven Numbers, J. Integer Seqs., Vol. 6, 2003, Article 03.2.5.
- Nicolas Doyon, Les fascinants nombres de Niven, Thèse de la Faculté des Sciences et de Génie de l'Université Laval, Québec, Novembre 2006 (in French).
- Ömer Eğecioğlu and Bünyamin Şahin, On twin EP numbers, Transact. Comb. (2025) Vol. 14, Iss. 4, Art. No. 4, 261-270. See p. 262.
- Richard K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
- Richard K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- Robert E. Kennedy, Digital sums, Niven numbers, and natural density, Crux Mathematicorum, Vol. 8 (1982), pp. 131-135.
- Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, The College Mathematics Journal, Vol. 15, No. 4 (Sep., 1984), pp. 309-312.
- Project Euler, Harshad Numbers: Problem 387.
- Terry Trotter, Niven Numbers for Fun and Profit. [archived page]
- Gérard Villemin, Nombres de Harshad (French).
- Elaine E. Visitacion, Renalyn T. Boado, Mary Ann V. Doria, and Eduard M. Albay, On Harshad Number, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 134-138. [archived]
- Eric Weisstein's World of Mathematics, Digit and Harshad Numbers.
- Wikipedia, Harshad number.
Crossrefs
Programs
-
GAP
Filtered([1..230],n-> n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # Muniru A Asiru
-
Haskell
a005349 n = a005349_list !! (n-1) a005349_list = filter ((== 0) . a070635) [1..] -- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
-
Magma
[n: n in [1..250] | n mod &+Intseq(n) eq 0]; // Bruno Berselli, May 28 2011
-
Magma
[n: n in [1..250] | IsIntegral(n/&+Intseq(n))]; // Bruno Berselli, Feb 09 2016
-
Maple
s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # Emeric Deutsch
-
Mathematica
harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *) Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
-
PARI
is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
-
Python
A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
-
Sage
[n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
Comments