A092595 Numbers k such that the sum of decimal digits of k and k+1 are both prime numbers, i.e., both k and k+1 are in A028834.
2, 11, 20, 29, 49, 101, 110, 119, 139, 199, 200, 209, 229, 289, 319, 379, 409, 469, 559, 649, 739, 829, 919, 1001, 1010, 1019, 1039, 1099, 1100, 1109, 1129, 1189, 1219, 1279, 1309, 1369, 1459, 1549, 1639, 1729, 1819, 1909, 2000, 2009, 2029, 2089, 2119, 2179
Offset: 1
Examples
For k=4429, digitsum(k) = 4 + 4 + 2 + 9 = 19, digitsum(k+1) = 4 + 4 + 3 + 0 = 11.
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..10000.
Crossrefs
Cf. A028834.
Programs
-
Mathematica
t=Table[0, {256}]; j=1; Do[s=Apply[Plus, IntegerDigits[n]]; s1=Apply[Plus, IntegerDigits[n+1]]; If[PrimeQ[s]&&PrimeQ[s1], Print[n]; t[[j]]=n; j=j+1], {n, 1, 10000}]; t DeleteCases[ParallelTable[If[PrimeQ[Total[IntegerDigits[n]]]&&PrimeQ[Total[IntegerDigits[n+1]]],n,a],{n,2,952999}],a] (* J.W.L. (Jan) Eerland, Dec 20 2021 *) SequencePosition[Table[If[PrimeQ[Total[IntegerDigits[n]]],1,0],{n,2500}],{1,1}][[;;,1]] (* Harvey P. Dale, Jan 28 2025 *)
-
PARI
isok(n) = isprime(sumdigits(n)) && isprime(sumdigits(n+1)); \\ Michel Marcus, Jul 29 2017
Comments