cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A184011 Coefficients of the formal power series of a half-iterate of exp(x)-1 (rescaled).

Original entry on oeis.org

0, 1, 2, 2, 0, 8, -56, 32, 10176, -215808, -78784, 150990912, -3405688576, -139041794560, 10385778676736, 130003936220160, -43016304236761088, 526545841919713280, 266085261164348628992, -12347306589339686547456
Offset: 0

Views

Author

Gottfried Helms, Feb 13 2011

Keywords

Comments

Consider the formal power series for the real half-iterate of exp(x)-1 = Sum_{k>=0} c_k*x^k with c_1 = +1 then a(k) = c_k*k!*4^{k-1} and all a(k) seem to be integers.
For the general technique of finding the half-iterate of power series, see for instance the Comtet reference.

Examples

			f(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + O(x^8)
so   c_3  = 1/48
and  a(3) = c_3 * 4^2*3! = 16*6/48 = 2
		

References

  • Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.

Crossrefs

Programs

  • Mathematica
    max = 19; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[f[f[x]] - Exp[x] - 1, {x, 0, max}], x]; sol = Solve[Thread[coes == 0] // Rest] // First; Table[c[n]*4^(n-1)*n!, {n, 0, max}] /. sol (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    {a(n)=local(A=x+x^2,B=x);for(i=1,n,B=serreverse(A+x*O(x^n));A=(A+exp(B)-1)/2);4^(n-1)*n!*polcoeff(A,n)} \\ Paul D. Hanna
    
  • PARI
    {trisqrt(m) = local(tmp, rs=rows(m), cs=cols(m), c);
    \\ computes sqrt of lower triangular matrix with unit-diagonal
       tmp=matid(#m);
       for(d=1,rs-1,
            for(r=d+1,rs,
                  c=r-d;
                  tmp[r,c]=(m[r,c]-sum(k=c+1,r-1,tmp[r,k]*tmp[k,c]))
                            /(tmp[c,c]+tmp[r,r])
               );
          );
    return(tmp);}
    ff = exp(x)-1
    Mff = matrix(6,6,r,c,polcoeff(ff^(c-1),(r-1))) \\ create Bell-matrix for ff
    Mf =  trisqrt ( Mff )  \\ = Mff^(1/2) is Bellmatrix for f
    f = Ser(Mf[,2])  \\ coefficients of power series for half-iterate of exp(x)-1 from second column in Mf

Formula

G.f. f(x) where f(f(x)) = exp(x)-1 with f'(0)=1.
T(n,m) = if n=m then 1 else (stirling2(n,m)*m!/n!-sum(i=m+1..n-1, T(n,i)*T(i,m)))/2; a(n) = 4^(n-1)*n!*T(n,1). - Vladimir Kruchinin, Nov 09 2011
E.g.f. A(x), satisfies A(A(x))=(exp(4*x)-1)/4, T(n,m)=1/2*(4^(n-m)*stirling2(n,m)-sum(i=m+1..n-1, T(n,i)*T(i,m))), T(n,n)=1, a(n)=T(n,1), a(0)=0. - Dmitry Kruchinin, Dec 04 2012
a(n) = A052122(n) * 2^(2*n - 2 - A052123(n)). - Andrey Zabolotskiy, Aug 22 2022

A052122 Numerators of coefficients in the e.g.f. a(x) such that a(a(x)) = exp(x) - 1.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, -7, 1, 159, -843, -1231, 2359233, -13303471, -271566005, 10142361989, 126956968965, -10502027401553, 64275615468715, 32481110981976151, -3014479147788009411, -147131182752475409229, 14607119841651449406947, 1868869263315549659372569
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

Examples

			a(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52.

Crossrefs

Programs

  • Mathematica
    T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[n!*T[n, 1] // Numerator , {n, 0, 22}] (* Jean-François Alcover, Mar 03 2014, after A052104 and Alois P. Heinz *)

Formula

a(n)/2^A052123(n) = n!*A052104(n)/A052105(n). - R. J. Mathar, Sep 25 2011

Extensions

More terms from Vladeta Jovovic, Jul 27 2002

A052104 Numerators of coefficients of the formal power series a(x) such that a(a(x)) = exp(x) - 1.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, -7, 1, 53, -281, -1231, 87379, -13303471, -54313201, 10142361989, 2821265977, -10502027401553, 1836446156249, 2952828271088741, -1004826382596003137, -7006246797736924249, 14607119841651449406947, 1868869263315549659372569
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2000

Keywords

Examples

			a(x) = x + x^2/4 + x^3/48 + x^5/3840 - 7*x^6/92160 + x^7/645120 + ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52c.

Crossrefs

Programs

  • Maple
    T:= proc(n, m) T(n, m):= `if`(n=m, 1, (Stirling2(n, m)*m!/n!-
           add(T(n,i)*T(i,m), i=m+1..n-1))/2)
        end:
    a:= n-> numer(T(n, 1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 11 2013
  • Mathematica
    T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[T[n, 1] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==n): return 1
        else: return ( (factorial(k)/factorial(n))*stirling_number2(n,k) - sum(T(n,j)*T(j,k) for j in (k+1..n-1)) )/2
    [numerator(T(n,1)) for n in (0..30)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = numerator(T(n,1)) where T(n, m) = if n=m then 1, otherwise ( StirlingS2(n, m)*m!/n! - Sum_{i=m+1..n-1} T(n, i)*T(i, m) )/2. - Vladimir Kruchinin, Nov 08 2011

A052105 Denominators of coefficients in the formal power series a(x) such that a(a(x)) = exp(x) - 1.

Original entry on oeis.org

1, 1, 4, 48, 1, 3840, 92160, 645120, 3440640, 30965760, 14863564800, 24222105600, 7847962214400, 40809403514880, 5713316492083200, 7617755322777600, 5484783832399872000, 5328075722902732800, 1220613711064989696000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2000

Keywords

Examples

			a(x) = x + x^2/4 + x^3/48 + x^5/3840 - 7*x^6/92160 + x^7/645120 + ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52c.

Crossrefs

Programs

  • Maple
    T:= proc(n, k);
    T(n, k):= `if`(n=k, 1, (Stirling2(n, k)*k!/n! - add(T(n, j)*T(j, k), j = k+1..n-1))/2);
    end proc;
    a:= n -> denom(T(n, 1));
    seq(a(n), n = 0..30); # G. C. Greubel, Apr 15 2021
  • Mathematica
    (* First program *)
    a[x_, n_] := Sum[c[k] x^k, {k, 0, n}] ;
    f[x_, n_] := Series[Exp[x] - 1, {x, 0, n}] // Normal;
    b[x_, n_] := Series[a[a[x, n], n], {x, 0, n}] // Normal;
    eq[n_] := Thread[CoefficientList[f[x, n] - b[x, n], x] == 0] // Rest;
    c[0] = 0; so[3] = Solve[eq[3], {c[1], c[2], c[3]}] // First;
    so[n_] := so[n] = Solve[eq[n] /. Flatten[Table[so[k], {k, 3, n - 1}]], c[n]] // First
    Array[c, 19, 0] /. Flatten[Table[so[k], {k, 3, 19}]] // Denominator
    (* Jean-François Alcover, Jun 08 2011 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, (StirlingS2[n, k]*k!/n! - Sum[T[n, j]*T[j, k], {j, k+1, n-1}])/2];
    Table[Denominator[T[n, 1]], {n, 0, 30}] (* G. C. Greubel, Apr 15 2021 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==n): return 1
        else: return ( (factorial(k)/factorial(n))*stirling_number2(n,k) - sum(T(n,j)*T(j,k) for j in (k+1..n-1)) )/2
    [denominator(T(n,1)) for n in (0..30)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = denominator(T(n,1)) where T(n, m) = if n=m then 1, otherwise ( StirlingS2(n, m)*m!/n! - Sum_{i=m+1..n-1} T(n, i)*T(i, m) )/2. - G. C. Greubel, Apr 15 2021

A220112 E.g.f. A(x) satisfies A(A(x)) = (1/4)*log(1/(1-4*x)).

Original entry on oeis.org

1, 2, 10, 80, 872, 11928, 195072, 3702080, 80065792, 1950808000, 53016791360, 1587229842688, 51619520360960, 1808576831681536, 68562454975587328, 2830905156661645312, 124395772159835529216, 5504660984739184156672, 250011277837808237105152, 14799530615476409472303104
Offset: 1

Views

Author

Dmitry Kruchinin, Dec 05 2012

Keywords

Comments

a(23) = -4050933314339181211663673622528 is the first negative term. - Vladimir Reshetnikov, Aug 15 2021

References

  • Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.

Crossrefs

Programs

  • Maple
    A := proc(n, m) option remember; if n = m then 1 else
    1/2*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - add(A(n,k)*A(k,m), k =m+1..n-1)) fi end: a := n -> A(n,1): seq(a(n), n = 1..23); # Peter Luschny, Aug 15 2021
  • Mathematica
    t[n_, m_] := t[n, m] = 1/2*(4^(n - m)*(-1)^(n - m)*StirlingS1[n, m] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 20}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*stirling1(n,m)-sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist((T(n,1)),n,1,10);

Formula

a(n) = T(n,1), T(n,m) = (1/2)*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - Sum_{i=m+1..n-1} T(n,i)*T(i,m)), T(n,n)=1.

Extensions

More terms from Vladimir Reshetnikov, Aug 15 2021

A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1

Views

Author

Thomas Scheuerle, Mar 10 2025

Keywords

Comments

This is the main entry for this sequence of fractions.
Convergence and analytic continuation of this series representation are interesting research topics with many unsolved problems and open questions.
Evaluating the polynomial of row n P(x) = Sum_{k=1..n} x^(n+1-k)*A381932(n, k)/T(n, k) gives A144150(n+1, x-1)/(n+1)!.

Examples

			Triangle T(n, k) begins:
[1]  2;
[2]  4,   12;
[3]  8,   48,     48;
[4]  16,  144,    24,     180;
[5]  32,  1152,   1728,   5760,   8640;
[6]  64,  640,    3456,   5760,   17280,   6720;
[7]  128, 7680,   34560,  1152,   34560,   32256,   241920;
[8]  256, 26880,  82944,  414720, 41472,   580608,  107520,   1451520;
[9]  512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));

Formula

T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).

A381932 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1

Views

Author

Thomas Scheuerle, Mar 12 2025

Keywords

Comments

The main entry for this sequence of fractions is in A381931.

Examples

			Triangle T(n, k) begins:
[1]  1;
[2]  1,    -1;
[3]  1,    -5,     1;
[4]  1,   -13,     1,     -1;
[5]  1,   -77,    89,    -91,    11;
[6]  1,   -29,   175,   -149,    91,     -1;
[7]  1,  -223,  1501,    -37,   391,    -43,   -11;
[8]  1,  -481,  2821, -13943,   725,  -2357,    17,   29;
[9]  1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Cf. A381931 (denominators).

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));

Formula

Conjecture: abs(T(n, 2)) = A064169(n - 1).
T(n, n) = numerator(A180609(n)/(n!*(n+1)!)).
Showing 1-7 of 7 results.