A184011
Coefficients of the formal power series of a half-iterate of exp(x)-1 (rescaled).
Original entry on oeis.org
0, 1, 2, 2, 0, 8, -56, 32, 10176, -215808, -78784, 150990912, -3405688576, -139041794560, 10385778676736, 130003936220160, -43016304236761088, 526545841919713280, 266085261164348628992, -12347306589339686547456
Offset: 0
f(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + O(x^8)
so c_3 = 1/48
and a(3) = c_3 * 4^2*3! = 16*6/48 = 2
- Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.
-
max = 19; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[f[f[x]] - Exp[x] - 1, {x, 0, max}], x]; sol = Solve[Thread[coes == 0] // Rest] // First; Table[c[n]*4^(n-1)*n!, {n, 0, max}] /. sol (* Jean-François Alcover, Feb 11 2013 *)
-
{a(n)=local(A=x+x^2,B=x);for(i=1,n,B=serreverse(A+x*O(x^n));A=(A+exp(B)-1)/2);4^(n-1)*n!*polcoeff(A,n)} \\ Paul D. Hanna
-
{trisqrt(m) = local(tmp, rs=rows(m), cs=cols(m), c);
\\ computes sqrt of lower triangular matrix with unit-diagonal
tmp=matid(#m);
for(d=1,rs-1,
for(r=d+1,rs,
c=r-d;
tmp[r,c]=(m[r,c]-sum(k=c+1,r-1,tmp[r,k]*tmp[k,c]))
/(tmp[c,c]+tmp[r,r])
);
);
return(tmp);}
ff = exp(x)-1
Mff = matrix(6,6,r,c,polcoeff(ff^(c-1),(r-1))) \\ create Bell-matrix for ff
Mf = trisqrt ( Mff ) \\ = Mff^(1/2) is Bellmatrix for f
f = Ser(Mf[,2]) \\ coefficients of power series for half-iterate of exp(x)-1 from second column in Mf
A052122
Numerators of coefficients in the e.g.f. a(x) such that a(a(x)) = exp(x) - 1.
Original entry on oeis.org
0, 1, 1, 1, 0, 1, -7, 1, 159, -843, -1231, 2359233, -13303471, -271566005, 10142361989, 126956968965, -10502027401553, 64275615468715, 32481110981976151, -3014479147788009411, -147131182752475409229, 14607119841651449406947, 1868869263315549659372569
Offset: 0
a(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + ...
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52.
-
T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[n!*T[n, 1] // Numerator , {n, 0, 22}] (* Jean-François Alcover, Mar 03 2014, after A052104 and Alois P. Heinz *)
A052104
Numerators of coefficients of the formal power series a(x) such that a(a(x)) = exp(x) - 1.
Original entry on oeis.org
0, 1, 1, 1, 0, 1, -7, 1, 53, -281, -1231, 87379, -13303471, -54313201, 10142361989, 2821265977, -10502027401553, 1836446156249, 2952828271088741, -1004826382596003137, -7006246797736924249, 14607119841651449406947, 1868869263315549659372569
Offset: 0
a(x) = x + x^2/4 + x^3/48 + x^5/3840 - 7*x^6/92160 + x^7/645120 + ...
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52c.
-
T:= proc(n, m) T(n, m):= `if`(n=m, 1, (Stirling2(n, m)*m!/n!-
add(T(n,i)*T(i,m), i=m+1..n-1))/2)
end:
a:= n-> numer(T(n, 1)):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 11 2013
-
T[n_, n_] = 1; T[n_, m_] := T[n, m] = (StirlingS2[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2; Table[T[n, 1] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
-
@CachedFunction
def T(n,k):
if (k==n): return 1
else: return ( (factorial(k)/factorial(n))*stirling_number2(n,k) - sum(T(n,j)*T(j,k) for j in (k+1..n-1)) )/2
[numerator(T(n,1)) for n in (0..30)] # G. C. Greubel, Apr 15 2021
A052105
Denominators of coefficients in the formal power series a(x) such that a(a(x)) = exp(x) - 1.
Original entry on oeis.org
1, 1, 4, 48, 1, 3840, 92160, 645120, 3440640, 30965760, 14863564800, 24222105600, 7847962214400, 40809403514880, 5713316492083200, 7617755322777600, 5484783832399872000, 5328075722902732800, 1220613711064989696000
Offset: 0
a(x) = x + x^2/4 + x^3/48 + x^5/3840 - 7*x^6/92160 + x^7/645120 + ...
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.52c.
-
T:= proc(n, k);
T(n, k):= `if`(n=k, 1, (Stirling2(n, k)*k!/n! - add(T(n, j)*T(j, k), j = k+1..n-1))/2);
end proc;
a:= n -> denom(T(n, 1));
seq(a(n), n = 0..30); # G. C. Greubel, Apr 15 2021
-
(* First program *)
a[x_, n_] := Sum[c[k] x^k, {k, 0, n}] ;
f[x_, n_] := Series[Exp[x] - 1, {x, 0, n}] // Normal;
b[x_, n_] := Series[a[a[x, n], n], {x, 0, n}] // Normal;
eq[n_] := Thread[CoefficientList[f[x, n] - b[x, n], x] == 0] // Rest;
c[0] = 0; so[3] = Solve[eq[3], {c[1], c[2], c[3]}] // First;
so[n_] := so[n] = Solve[eq[n] /. Flatten[Table[so[k], {k, 3, n - 1}]], c[n]] // First
Array[c, 19, 0] /. Flatten[Table[so[k], {k, 3, 19}]] // Denominator
(* Jean-François Alcover, Jun 08 2011 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==n, 1, (StirlingS2[n, k]*k!/n! - Sum[T[n, j]*T[j, k], {j, k+1, n-1}])/2];
Table[Denominator[T[n, 1]], {n, 0, 30}] (* G. C. Greubel, Apr 15 2021 *)
-
@CachedFunction
def T(n,k):
if (k==n): return 1
else: return ( (factorial(k)/factorial(n))*stirling_number2(n,k) - sum(T(n,j)*T(j,k) for j in (k+1..n-1)) )/2
[denominator(T(n,1)) for n in (0..30)] # G. C. Greubel, Apr 15 2021
A220112
E.g.f. A(x) satisfies A(A(x)) = (1/4)*log(1/(1-4*x)).
Original entry on oeis.org
1, 2, 10, 80, 872, 11928, 195072, 3702080, 80065792, 1950808000, 53016791360, 1587229842688, 51619520360960, 1808576831681536, 68562454975587328, 2830905156661645312, 124395772159835529216, 5504660984739184156672, 250011277837808237105152, 14799530615476409472303104
Offset: 1
- Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.
-
A := proc(n, m) option remember; if n = m then 1 else
1/2*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - add(A(n,k)*A(k,m), k =m+1..n-1)) fi end: a := n -> A(n,1): seq(a(n), n = 1..23); # Peter Luschny, Aug 15 2021
-
t[n_, m_] := t[n, m] = 1/2*(4^(n - m)*(-1)^(n - m)*StirlingS1[n, m] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 20}] (* Jean-François Alcover, Feb 22 2013 *)
-
T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*stirling1(n,m)-sum(T(n,i)*T(i,m),i,m+1,n-1));
makelist((T(n,1)),n,1,10);
A381931
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
Original entry on oeis.org
2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1
Triangle T(n, k) begins:
[1] 2;
[2] 4, 12;
[3] 8, 48, 48;
[4] 16, 144, 24, 180;
[5] 32, 1152, 1728, 5760, 8640;
[6] 64, 640, 3456, 5760, 17280, 6720;
[7] 128, 7680, 34560, 1152, 34560, 32256, 241920;
[8] 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520;
[9] 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
-
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));
A381932
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
Original entry on oeis.org
1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1
Triangle T(n, k) begins:
[1] 1;
[2] 1, -1;
[3] 1, -5, 1;
[4] 1, -13, 1, -1;
[5] 1, -77, 89, -91, 11;
[6] 1, -29, 175, -149, 91, -1;
[7] 1, -223, 1501, -37, 391, -43, -11;
[8] 1, -481, 2821, -13943, 725, -2357, 17, 29;
[9] 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
-
c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));
Showing 1-7 of 7 results.
Comments