cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A228561 Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as i + j and 4*(i + j)^2 + 1 are both prime or not.

Original entry on oeis.org

1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 4, -16, -9, 25, 4, -81, -81, 81, 841, -5929, -3969, 19600, 69169, -667489, -285156, 80656, 276676, -790321, -60025, 3136, 10816, -40000, -45369, 221841, 86436, -168100, -12100, 13225, 11881, -87616, -71289, 729
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2013

Keywords

Comments

Conjecture: a(n) is nonzero for each n > 28.
This implies that there are infinitely many primes p with 4*p^2 + 1 also prime. Note also that (-1)^{n*(n-1)/2}*a(n) is always a square in view of the comments in A228591.

Examples

			a(1) = 1 since  1 + 1 = 2 and 4*2^2 + 1 = 17 are both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[PrimeQ[i+j]==True&&PrimeQ[4(i+j)^2+1]==True,1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,30}]

A052292 Primes of form 4*p^2 + 1, p prime.

Original entry on oeis.org

17, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877
Offset: 1

Views

Author

Labos Elemer, Feb 08 2000

Keywords

Examples

			a(10) = 42437 = 4*103*103 + 1, where 103 is the generating prime.
		

Crossrefs

Cf. A052291.

Programs

  • Mathematica
    Select[Prime[Range[350000]], PrimeQ[Sqrt[(#-1)/4]]&] (* Harvey P. Dale, Feb 20 2011 *)

Formula

q = 4p^2 + 1 primes

A258896 Divisorial primes p of the form p = 1 + k^2 where k^2 = Product_{d|k} d= A007955(k) for some k.

Original entry on oeis.org

2, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837, 7043717
Offset: 1

Views

Author

Jaroslav Krizek, Jun 20 2015

Keywords

Comments

Sequence lists divisorial primes p from A258455 such that p-1 = A007955(sqrt(p-1)).
If 1 + Product_{d|k} d for some k > 1 is a prime p other than 3, then p-1 is a square and p is either of the form k^2 + 1 or h^2 + 1 where h>k. In this sequence are divisorial primes of the first kind. Divisorial primes of the second kind are in A258897.
With number 3, complement of A258897 with respect to A258455.
All terms > 2 are of the form 4*q^2 + 1 where q = prime (see A052292).
Subsequence of A002496 (primes of the form k^2 + 1), and the corresponding k are a subsequence of A007422. - Michel Marcus, Jul 09 2015

Examples

			Number 101 is in sequence because 100 is the product of divisors of 10; 101 - 1 = 100 = A007955(sqrt(101 - 1)).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • PARI
    lista(nn) = {forprime(p=2, nn, if (issquare(pp=(p-1)) && (k=sqrtint(pp)) && (d=divisors(k)) && (1+prod(j=1, #d, d[j])==p), print1(p, ", ")););} \\ Michel Marcus, Jul 08 2015

Formula

For n>1; a(n) = 4*(A052291(n))^2 + 1 = A052292(n).

A259021 Numbers k such that k^2 = Product_{d|k} d (= A007955(k)) and simultaneously k^2 + 1 is a divisorial prime (A258455).

Original entry on oeis.org

1, 6, 10, 14, 26, 74, 94, 134, 146, 206, 314, 326, 386, 466, 634, 674, 1094, 1174, 1294, 1306, 1354, 1366, 1546, 1654, 1766, 1774, 1894, 1966, 2026, 2126, 2174, 2326, 2594, 2654, 2746, 2974, 2986, 3046, 3106, 3134, 3214, 3254, 3274, 3314, 3326, 3334, 3446
Offset: 1

Views

Author

Jaroslav Krizek, Sep 01 2015

Keywords

Comments

First deviation from A259020 is at a(15).
With number 2 complement of A259023 with respect to A118369.
1 together with squarefree semiprimes (A006881) k such that k^2 + 1 is prime. Without the squarefree restriction there will be only one more term, 4. - Amiram Eldar, Sep 25 2022

Examples

			The number 10 is in sequence because 10^2 = 1*2*5*10 = 100 and simultaneously 101 is prime.
		

Crossrefs

Union of {1} and (intersection of A005574 and A006881).
Subsequence of A007422, A048943, A259020, A118369.

Programs

  • Magma
    [Floor(Sqrt(n-1)): n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • Mathematica
    Prepend[2*Select[Prime[Range[2, 300]], PrimeQ[4 #^2 + 1] &], 1] (* Amiram Eldar, Sep 25 2022 *)
  • Sage
    a = [n for n in range(1,100000) if is_prime(n^2+1) and n^2==prod(list(divisors(n)))] # Danny Rorabaugh, Sep 21 2015

Formula

a(n) = 2*A052291(n) for n > 1. - Amiram Eldar, Sep 25 2022

A098047 Numbers not in A098006.

Original entry on oeis.org

5, 20, 21, 22, 24, 28, 31, 33, 34, 36, 37, 38, 43, 45, 46, 48, 51, 52, 55, 58, 61, 67, 69, 70, 73, 79, 80, 82, 87, 88, 91, 97, 99, 100, 104, 106, 108, 112, 115, 117, 118, 123, 124, 127, 130, 132, 136, 138, 142, 145, 147, 148, 151, 152, 154, 156, 157, 159, 163, 166, 172
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2004

Keywords

Comments

In the Luca-Walsh paper it is shown that this sequence is infinite.
It can be shown that if a number k > 8, k not a power of 2, is in A098006, then k first appears for a prime p <= 1+k^2. For example, 26 first appears as A098006(123). The 123rd prime is 677, which equals 1+26^2. When this worst-case behavior occurs, then k/2 is a prime in A052291 and the corresponding 1+k^2 is in A052292. - T. D. Noe, Nov 13 2007
Banks and Luca (2004, 2005) called these numbers Robbins numbers. They proved that the lower asymptotic density of this sequence is > 1/3. - Amiram Eldar, Feb 13 2021

Crossrefs

Cf. A098006.

Programs

  • Mathematica
    t = Table[0, {200}]; Do[p = Prime[n]; a = (p - 1)/2 - EulerPhi[p - 1]; If[p < 201, t[[a]]++ ], {n, 2, 10^7}]; u = Table[ If[ t[[n]] != 0, n, 0], {n, 1, 200}]; Complement[ Range[200], u]

A122424 Primes p such that q = 4p^2 + 1 and r = 4q^2 + 1 are also prime.

Original entry on oeis.org

3, 13, 47, 677, 983, 1013, 1163, 1373, 1567, 1877, 2003, 2333, 2477, 2753, 3463, 4057, 4423, 4993, 7253, 9833, 10993, 11383, 13907, 15413, 15607, 17317, 18517, 19867, 20123, 20533, 20693, 21937, 24517, 24967, 25633, 26293, 28547, 28867, 29063
Offset: 1

Views

Author

Zak Seidov, Oct 20 2006

Keywords

Comments

Subsequence of A052291.

Crossrefs

Cf. A052291 (Primes p such that 4p^2 + 1 is also prime).
Cf. A005574 (Numbers n such that n^2 + 1 is prime).

Programs

  • Magma
    [p: p in PrimesUpTo(30000) | IsPrime(q) and IsPrime(4*q^2+1) where q is 4*p^2+1]; // Vincenzo Librandi, Apr 09 2013
    
  • Maple
    A122424:=n->`if`(isprime(n) and isprime(4*n^2+1) and isprime(4*(4*n^2+1)^2+1),n,NULL): seq(A122424(n), n=1..10^5); # Wesley Ivan Hurt, Aug 04 2014
  • Mathematica
    Select[Prime[Range[3500]], PrimeQ[4 #^2 + 1] && PrimeQ[64 #^4 + 32 #^2 + 5]&] (* Vincenzo Librandi, Apr 09 2013 *)
  • PARI
    f(x)=4*x^2+1;
    forprime(p=1,10^5,if(isprime(f(p))&&isprime(f(f(p))),print1(p,", "))) \\ Derek Orr, Jul 31 2014

A153812 Primes p such that 6*p^2+1 is also prime.

Original entry on oeis.org

5, 11, 59, 79, 89, 109, 131, 191, 199, 241, 269, 359, 389, 431, 439, 661, 691, 829, 859, 1019, 1109, 1181, 1249, 1319, 1439, 1621, 1759, 1789, 1831, 1949, 1979, 2011, 2081, 2111, 2179, 2341, 2371, 2389, 2441, 2459, 2671, 2699, 2861, 2999, 3169, 3229, 3251
Offset: 1

Views

Author

Klaus Brockhaus, Jan 01 2009

Keywords

Examples

			For prime p = 199, 6*p^2+1 = 237607 is prime.
		

Crossrefs

Cf. A052291 (primes p such that 4p^2 + 1 is also prime).

Programs

  • Magma
    [ p: p in PrimesUpTo(3300) | IsPrime(6*p^2+1) ];
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[(6 #^2 + 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)

A306722 Number of pairs of primes (p,q), p < q, which are a solution of the Diophantine equation (p-1)*(q-1) = (2n)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 0, 3, 1, 1, 1, 1, 0, 3, 0, 3, 1, 1, 0, 3, 1, 1, 4, 3, 0, 3, 0, 1, 4, 0, 1, 3, 1, 0, 0, 3, 0, 3, 0, 1, 4, 0, 1, 3, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 5, 0, 1, 4, 0, 1, 4, 1, 0, 0, 4, 0, 6, 1, 1, 4, 0, 0, 5, 0, 4, 1
Offset: 1

Views

Author

Bernard Schott, Mar 06 2019

Keywords

Comments

a(n) is also the number of semiprimes p*q whose totient is a square (A247129) and equal to (2*n)^2.
From Robert G. Wilson v, Mar 30 2019, Mar 30 2019: (Start)
First occurrence of k=1,2,3,...: 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, ..., . = A307245.
Start of table:
a(k_i) = n:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
n\
0 11 17 19 23 29 31 34 38 39 41 43 46 49 51 53 ...
1 1 2 4 5 7 8 9 13 14 15 16 21 22 25 26 ...
2 3 6 54 56 58 87 100 115 116 123 138 148 160 170 176 ...
3 10 12 18 20 24 28 30 36 40 42 48 84 88 99 144 ...
4 27 33 45 63 66 70 75 80 112 126 135 153 156 162 165 ...
5 60 78 90 102 140 168 200 260 264 285 288 315 378 408 432 ...
6 72 105 108 130 150 306 348 357 450 495 528 560 672 696 708 ...
7 120 132 240 297 312 330 390 588 750 882 980 1140 1176 1190 1215 ...
8 180 198 210 280 396 468 540 612 648 700 810 910 945 960 1020 ...
9 270 420 660 858 918 990 1248 1620 1782 1920 2088 2184 2352 2376 2688 ...
... (End).
If n is a prime <> 3, then a(n) = 1 if n is in A052291 and 0 otherwise, and a(n^2) = 1 if 2*n+1 and 2*n^3+1 are primes and 0 otherwise. - Robert Israel, Apr 04 2019

Examples

			a(2) = 1 because (2*2)^2 = (2-1) * (17-1), also, phi(2*17) = 4^2.
a(3) = 2 because (2*3)^2 = (2-1) * (37-1) = (3-1) * (19-1), also, phi(2*37) = phi(3*19) = 6^2.
a(11) = 0  because (2*11)^2 can't be written as (p-1)*(q-1) with p < q.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local w;
      w:= (2*n)^2;
      nops(select(t -> t < 2*n and isprime(t+1) and isprime(w/t + 1),  numtheory:-divisors(w)))
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 04 2019
  • Mathematica
    f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# + 1] && PrimeQ[ 4n^2/# + 1] &]; Array[f, 81] (* Robert G. Wilson v, Mar 30 2019 *)
  • PARI
    a(n) = {my(nb = 0, nn = 4*n^2); fordiv(nn, d, if (d == 2*n, break); if (isprime(d+1) && isprime(nn/d+1), nb++);); nb;} \\ Michel Marcus, Mar 06 2019

A378134 a(n) is the smallest prime p such that (2*p)^(2^n) + 1 is also prime.

Original entry on oeis.org

2, 2, 2, 2, 37, 281, 137, 2129, 139, 23, 1231, 1279, 17477
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 17 2024

Keywords

Crossrefs

Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), A378146 (k = 2).
If a(n) is the smallest prime number p such that (p*2^m)^(2^n) + 1, then we have:
2, 2, 2, 2, 2 (in case m = 0), where primes of the form (p*2^0)^(2^n)+1 are A019434;
this sequence (in case m = 1).
Cf. A378143.

Extensions

a(11)-a(12) from Michael S. Branicky, Nov 18 2024

A378143 a(n) is the smallest prime of the form (2*p)^(2^n) + 1 for some prime p.

Original entry on oeis.org

5, 17, 257, 65537, 808551180810136214718004658177, 9807585394417153072393128067370344132933540474708183331242417216238928121991128579833857
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 17 2024

Keywords

Comments

If p = 2, then a(n) is the Fermat prime.
Conjecture: the last digit of each value of a(n), where n >= 1, is 7.
The conjecture is equivalent to the claim that a(n) is not 10^(2^n) + 1 for any n, which in turn is equivalent to the claim that, if 10^(2^n) + 1 is prime, then either 4^(2^n) + 1 or 6^(2^n) + 1 is prime. - Charles R Greathouse IV, Nov 17 2024

Crossrefs

Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), A378146 (k = 2).
Showing 1-10 of 21 results. Next