cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A117651 A002415 and A052472 interlaced.

Original entry on oeis.org

1, 0, 2, 1, 0, 6, 10, 20, 35, 50, 84, 105, 168, 196, 300, 336, 495, 540, 770, 825, 1144, 1210, 1638, 1716, 2275, 2366, 3080, 3185, 4080, 4200, 5304, 5440, 6783, 6936, 8550, 8721, 10640, 10830, 13090, 13300, 15939, 16170, 19228, 19481, 23000, 23276, 27300
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x -2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10-4*x^11 )/( (1+x)^4*(1-x)^5) )); // G. C. Greubel, May 19 2019
    
  • Mathematica
    f[n_]:= n*(n+1)*(n+2)*(n-3)/12; g[n_]:= n^2*(n^2 -1)/12; Table[{Abs[f[n]], g[n]}, {n, 1, 25}]//Flatten
    LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1}, {1,0,2,1,0,6,10,20,35,50,84, 105}, 50] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x-2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10-4*x^11 )/((1+x)^4*(1-x)^5)) \\ G. C. Greubel, May 19 2019
    
  • Sage
    ((1-x-2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10 -4*x^11 )/((1+x)^4*(1-x)^5)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 19 2019

Formula

G.f.: (1 -x -2*x^2 +3*x^3 -3*x^4 +4*x^5 +16*x^6 -16*x^7 -14*x^8 +14*x^9 +4*x^10 -4*x^11 )/((1+x)^4*(1-x)^5). - Colin Barker, Mar 15 2013
a(n) = abs((2*n^4 +12*n^3 -2*n^2 -132*n -195 +(4*n^3 -6*n^2 -124*n -189)*(-1)^n))/384. - Luce ETIENNE, Jun 01 2015
a(n) = abs((-3*(65 +63*(-1)^n) -4*(33 +31*(-1)^n)*n -2*(1+3*(-1)^n)*n^2 +4*(3 +(-1)^n)*n^3 +2*n^4)/384). - Colin Barker, Jun 02 2015
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 11. - Charles R Greathouse IV, Jun 02 2015

A192011 Let P(0,x) = -1, P(1,x) = 2*x, and P(n,x) = x*P(n-1,x) - P(n-2,x) for n > 1. This sequence is the triangle of polynomial coefficients in order of decreasing exponents.

Original entry on oeis.org

-1, 2, 0, 2, 0, 1, 2, 0, -1, 0, 2, 0, -3, 0, -1, 2, 0, -5, 0, 0, 0, 2, 0, -7, 0, 3, 0, 1, 2, 0, -9, 0, 8, 0, 1, 0, 2, 0, -11, 0, 15, 0, -2, 0, -1, 2, 0, -13, 0, 24, 0, -10, 0, -2, 0, 2, 0, -15, 0, 35, 0, -25, 0, 0, 0, 1, 2, 0, -17, 0, 48, 0, -49, 0, 10, 0, 3, 0, 2, 0, -19, 0, 63, 0, -84, 0, 35, 0, 3, 0, -1
Offset: 0

Views

Author

Paul Curtz, Jun 21 2011

Keywords

Examples

			The first few rows are
  -1;
   2,   0;
   2,   0,   1;
   2,   0,  -1,   0;
   2,   0,  -3,   0,  -1;
   2,   0,  -5,   0,   0,   0;
   2,   0,  -7,   0,   3,   0,   1;
   2,   0,  -9,   0,   8,   0,   1,   0;
   2,   0, -11,   0,  15,   0,  -2,   0,  -1;
   2,   0, -13,   0,  24,   0, -10,   0,  -2,   0;
   2,   0, -15,   0,  35,   0, -25,   0,   0,   0,   1;
		

Crossrefs

Left hand diagonals are: T(n,0) = [-1,2,2,2,2,2,...], T(n,2) = A165747(n), T(n,4) = A067998(n+1), T(n,6) = -A058373(n), T(n,8) = (-1)^(n+1) * A167387(n+2) (see also A052472(n)).

Programs

  • Maple
    A192011 := proc(n,k)
            option remember;
            if k>n or k <0 or n<0 then
                    0;
            elif n= 0 then
                    -1;
            elif k=0 then
                    2;
            else
                    procname(n-1,k)-procname(n-2,k-2) ;
            end if;
    end proc: # R. J. Mathar, Nov 03 2011
  • Mathematica
    p[0, ] = -1; p[1, x] := 2x; p[n_, x_] := p[n, x] = x*p[n-1, x] - p[n-2, x]; row[n_] := CoefficientList[p[n, x], x]; Table[row[n] // Reverse, {n, 0, 9}] // Flatten (* Jean-François Alcover, Nov 26 2012 *)
    T[n_,k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, -1, If[k==0, 2, T[n-1,k] - T[n-2, k-2]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 19 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, -1, if(k==0, 2, T(n-1,k) - T(n-2,k-2)))) };
    for(n=0, 10, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 19 2019
    
  • Sage
    def T(n,k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return -1
        elif (k==0): return 2
        else: return T(n-1,k) - T(n-2, k-2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 19 2019

Formula

T(n, k) = T(n-1, k) - T(n-2, k-2), where T(0, 0) = -1, T(n, 0) = 2 and 0 <= k <= n, n >= 0. - G. C. Greubel, May 19 2019

A167387 a(n) = (-1)^(n+1) * n*(n-1)*(n-4)*(n+1)/12.

Original entry on oeis.org

1, -2, 0, 10, -35, 84, -168, 300, -495, 770, -1144, 1638, -2275, 3080, -4080, 5304, -6783, 8550, -10640, 13090, -15939, 19228, -23000, 27300, -32175, 37674, -43848, 50750, -58435, 66960, -76384, 86768, -98175, 110670, -124320, 139194, -155363, 172900
Offset: 2

Views

Author

Jamel Ghanouchi, Nov 02 2009

Keywords

Comments

The coefficient of [x^4] of the Polynomial B_{2n}(x) defined in A137276.
Essentially the same as A052472.

Crossrefs

Programs

  • GAP
    List([2..40], n-> (-1)^(n+1)*(n-4)*Binomial(n+1,3)/2); # G. C. Greubel, May 19 2019
  • Magma
    [(-1)^(n+1)*n*(n-1)*(n-4)*(n+1)/12: n in [2..40]]; // Vincenzo Librandi, Jun 13 2016
    
  • Mathematica
    Table[(-1)^(n+1)*(n+1)*n*(n-1)*(n-4)/12, {n, 2, 40}] (* G. C. Greubel, Jun 12 2016 *)
    LinearRecurrence[{-5, -10, -10, -5, -1}, {1, -2, 0, 10, -35}, 40] (* Vincenzo Librandi, Jun 13 2016 *)
  • PARI
    vector(40, n, n++; (-1)^(n+1)*(n-4)*binomial(n+1,3)/2) \\ G. C. Greubel, May 19 2019
    
  • Sage
    [(-1)^(n+1)*(n-4)*binomial(n+1,3)/2 for n in (2..40)] # G. C. Greubel, May 19 2019
    

Formula

a(n) = -5*a(n-1) -10*a(n-2) -10*a(n-3) -5*a(n-4) -a(n-5).
G.f.: x^2*(1+3*x)/(1+x)^5.
E.g.f.: x^2*(6 + 2*x - x^2)*exp(-x)/12. - G. C. Greubel, May 19 2019

A117652 a(n) = floor(n*(n+2)*(n+4)*(n-6)/192).

Original entry on oeis.org

0, -1, -1, -2, -2, -2, 0, 3, 10, 20, 35, 55, 84, 120, 168, 227, 300, 388, 495, 621, 770, 943, 1144, 1374, 1638, 1937, 2275, 2654, 3080, 3553, 4080, 4662, 5304, 6009, 6783, 7628, 8550, 9552, 10640, 11817, 13090, 14462, 15939, 17525, 19228, 21050, 23000, 25081
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2006

Keywords

Comments

Quasipolynomial with period 16. - Charles R Greathouse IV, Sep 06 2011

Crossrefs

Programs

  • Magma
    [Floor( n*(n+2)*(n+4)*(n-6)/192): n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
    
  • Mathematica
    Table[Floor[n*(n+1)*(n+2)*(n-3)/12], {n, 0, 25, 1/2}]
    LinearRecurrence[{4,-5,0,4,0,-4,0,4,0,-4,0,4,0,-4,0,5,-4,1},{0,-1,-1,-2,-2,-2,0,3,10,20,35,55,84,120,168,227,300,388},50] (* Harvey P. Dale, Nov 02 2024 *)
  • PARI
    a(n)=n*(n+2)*(n+4)*(n-6)\192 \\ Charles R Greathouse IV, Sep 06 2011
    
  • Sage
    [floor(n*(n+2)*(n+4)*(n-6)/192) for n in (0..50)] # G. C. Greubel, May 20 2019

Formula

a(n) = floor( n*(n+2)*(n+4)*(n-6)/192).
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-4) - 4*a(n-6) + 4*a(n-8) - 4*a(n-10) + 4*a(n-12) - 4*a(n-14) + 5*a(n-16) - 4*a(n-17) + a(n-18).

Extensions

More precise description, converted to a more regular signed sequence - the Assoc. Eds. of the OEIS, Jun 27 2010

A128890 Triangle T(n,k) related to walks in the positive quadrant.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 10, 0, 9, 0, 1, 0, 35, 0, 14, 0, 1, 70, 0, 84, 0, 20, 0, 1, 0, 294, 0, 168, 0, 27, 0, 1, 588, 0, 840, 0, 300, 0, 35, 0, 1, 0, 2772, 0, 1980, 0, 495, 0, 44, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2007

Keywords

Examples

			Triangle begins:
    1;
    0,    1;
    2,    0,   1;
    0,    5,   0,    1;
   10,    0,   9,    0,   1;
    0,   35,   0,   14,   0,   1;
   70,    0,  84,    0,  20,   0,  1;
    0,  294,   0,  168,   0,  27,  0,  1;
  588,    0, 840,    0, 300,   0, 35,  0,  1;
    0, 2772,   0, 1980,   0, 495,  0, 44,  0,  1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[k==0 && EvenQ[n], 4*Binomial[n,n/2]*Binomial[n+2,(n+2)/2 ]/((n+2)*(n+4)), If[EvenQ[n+k], Binomial[n, (n+k)/2]*Binomial[n+2, (n - k)/2] - Binomial[n+2, (n+k+2)/2]*Binomial[n, (n-k-2)/2], 0]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
  • PARI
    { T(n,k) = if(k==0 && n%2==0, 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)), if((n+k)%2==0, binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2), 0)) }; \\ G. C. Greubel, May 20 2019
    
  • Sage
    def T(n, k):
        if (k==0 and n%2==0): return 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4))
        elif ((n+k)%2==0): return binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2)
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019

Formula

T(n,k) = binomial(n, r)*binomial(n+2, s) - binomial(n+2, r+1)*binomial(n, s-1) with r=(n+k)/2 and s=(n-k)/2, if n+k is even otherwise T(n,k)=0. Also T(2*n,0) = A000108(n)*A000108(n+1) = A005568(n).
Showing 1-5 of 5 results.