cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000949 Number of forests with n nodes and height at most 2.

Original entry on oeis.org

1, 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, 121961051, 1782690174, 28055070397, 472594822324, 8479144213191, 161340195463066, 3243707386310033, 68679247688467056, 1526976223741111987, 35557878951515668726, 865217354118762606021
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of mappings from a set of n elements into itself where f(f(x)) = f(f(f(x))). - Chad Brewbaker, Mar 26 2014

Examples

			G.f. = 1 + x + 3*x^2 + 16*x^3 + 101*x^4 + 756*x^5 + 6607*x^6 + 65794*x^7 + ... - _Michael Somos_, Jul 03 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    a[ n_] := If[ n < 0, 0, 1 + n! Sum[ Sum[ k^(n - m - k) m^k / (k! (n - m - k)!), {k, n - m}] / m!, {m, n - 1}]]; (* Michael Somos, Jul 03 2018 *)
  • Maxima
    a(n):=n!*sum(sum((k^(n-m-k)*m^k)/(k!*(n-m-k)!),k,1,n-m)/m!,m,1,n-1)+1; /* Vladimir Kruchinin, May 28 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x*exp(x*exp(x))))) /* show terms with a(0)=1 */ /* Joerg Arndt, May 28 2011 */

Formula

E.g.f.: exp(x*exp(x*exp(x))).
a(n) = n!*sum(m=1..n-1, sum(k=1..n-m, (k^(n-m-k)*m^k)/(k!*(n-m-k)!))/m!)+1. - Vladimir Kruchinin, May 28 2011

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A000951 Number of forests with n nodes and height at most 4.

Original entry on oeis.org

1, 3, 16, 125, 1296, 16087, 229384, 3687609, 66025360, 1303751051, 28151798544, 659841763957, 16681231615816, 452357366282655, 13095632549137576, 403040561722348913, 13138626717852194976, 452179922268565180819, 16381932383826669204640
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x*Exp[x]]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x*exp(x))))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A000950 Number of forests with n nodes and height at most 3.

Original entry on oeis.org

1, 3, 16, 125, 1176, 12847, 160504, 2261289, 35464816, 612419291, 11539360944, 235469524237, 5170808565976, 121535533284999, 3043254281853496, 80852247370051793, 2270951670959226336, 67221368736302224819, 2091039845329887687136
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x)))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A052513 Number of labeled trees of height at most 3.

Original entry on oeis.org

0, 1, 2, 9, 64, 505, 4536, 46249, 526352, 6604497, 90466480, 1341571561, 21392282088, 364715915161, 6616327512536, 127187163197865, 2581443127409056, 55143025567270561, 1236226458392407008, 29012548251081127753, 711157579030313374520, 18169564436494014726441
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A000552.
Cf. A052514 (height at most 4).

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x*Exp(x))) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Prod(Z,Set(T1)), T2=Prod(Z,Set(T3)), T3=Z, T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    nn=20;a=x Exp[x];b=x Exp[a];Range[0,nn]! CoefficientList[Series[x Exp[b],{x,0,nn}],x]  (* Geoffrey Critzer, Sep 20 2012 *)
  • PARI
    N=33;  x='x+O('x^N);
    egf=x*exp(x*exp(x*exp(x)));
    v=Vec(serlaplace(egf));
    vector(#v+1,n,if(n==1,0,v[n-1]))
    /* Joerg Arndt, Sep 15 2012 */
    
  • Sage
    m = 20; T = taylor(x*exp(x*exp(x*exp(x))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

E.g.f.: x*exp(x*exp(x*exp(x))).
Showing 1-4 of 4 results.