cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052529 Expansion of (1-x)^3/(1 - 4*x + 3*x^2 - x^3).

Original entry on oeis.org

1, 1, 4, 13, 41, 129, 406, 1278, 4023, 12664, 39865, 125491, 395033, 1243524, 3914488, 12322413, 38789712, 122106097, 384377665, 1209982081, 3808901426, 11990037126, 37743426307, 118812495276, 374009739309, 1177344897715
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n+1) is the number of distinct matrix products in (A+B+C+D)^n where commutator [A,B] = [A,C] = [B,C] = 0 but D does not commute with A, B, or C. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Starting (1, 4, 13, ...) = INVERT transform of the triangular series, (1, 3, 6, 10, ...). Example: a(5) = 129 = termwise products of (1, 1, 4, 13, 41) and (15, 10, 6, 3, 1) = (15 + 10 + 24 + 39 + 41). - Gary W. Adamson, Apr 10 2009
a(n) is the number of generalized compositions of n when there are i^2/2+i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.2) gives a bijection between colored compositions of n, where each part k has one of binomial(k+1,2) colors, and 0,1,2,3 strings of length n-1 avoiding 10, 20 and 21. Cf. A095263. For a refinement of this sequence counting binomial(k+1,2)-colored compositions by the number of parts see A127893. - Peter Bala, Sep 17 2013

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 80.

Crossrefs

Trisection of A000930.
First differences of A052544.
Row sums of triangle A127893.

Programs

  • Magma
    I:=[1, 1, 4, 13, 41, 129]; [n le 6 select I[n] else 4*Self(n-1) -3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    f:= gfun:-rectoproc({a(n+4)-4*a(n+3)+3*a(n+2)-a(n+1), a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 13},a(n),`remember`):
    seq(f(n),n=0..40); # Robert Israel, Dec 19 2014
  • Mathematica
    CoefficientList[Series[(-1+x)^3/(-1+4*x-3*x^2+x^3),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    LinearRecurrence[{4,-3,1},{1,1,4,13},30] (* Harvey P. Dale, Oct 04 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)^3/(1-4*x+3*x^2-x^3)) \\ G. C. Greubel, May 12 2019
    
  • Sage
    ((1-x)^3/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

a(n) = Sum_{a=0..n} (Sum_{b=0..n} (Sum_{c=0..n} C(n-b-c,a)*C(n-a-c,b)*C(n-a-b,c))).
G.f.: (1 - x)^3/(1 - 4*x + 3*x^2 - x^3).
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3) for n>=4.
a(n) = Sum_{alpha = RootOf(-1+4*x-3*x^2+x^3)} (1/31)*(6 - 5*alpha - 3*alpha^2) * alpha^(-1-n).
For n>0, a(n) = Sum_{k=0..n-1} Sum_{i=0..k} Sum_{j=0..i} a(j). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=0..n} binomial(n+2*k-1, n-k). - Vladeta Jovovic, Mar 23 2003
If p[i]=i(i+1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
Recurrence equation: a(n) = Sum_{k = 1..n} 1/2*k*(k+1)*a(n-k) with a(0) = 1. - Peter Bala, Sep 19 2013
a(n) = Sum_{i=0..n} (n-i)*A052544(i) = A052544(n) - A052544(n-1) for n>=1. - Areebah Mahdia, Jul 07 2020