A159749
The decomposition of a certain labeled universe (A052584), triangle read by rows.
Original entry on oeis.org
2, 2, 4, 2, 12, 16, 0, 24, 96, 96, -8, 0, 320, 960, 768, 0, -240, 0, 4800, 11520, 7680, 240, 0, -6720, 0, 80640, 161280, 92160, 0, 13440, 0, -188160, 0, 1505280, 2580480, 1290240, -24192, 0, 645120, 0, -5419008, 0, 30965760, 46448640, 20643840
Offset: 0
2
2, 4
2, 12, 16
0, 24, 96, 96
-8, 0, 320, 960, 768
0, -240, 0, 4800, 11520, 7680
240, 0, -6720, 0, 80640, 161280, 92160
-
T := (n,k) -> (n+1)!*binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1);
-
T[n_, k_] := (n+1)! Binomial[n, k] BernoulliB[n-k, 1] 2^(k+1)/(k+1);
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019 *)
A000051
a(n) = 2^n + 1.
Original entry on oeis.org
2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0
- Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 244.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
- Ivan Panchenko, Table of n, a(n) for n = 0..100
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
- Bartomeu Fiol, Jairo Martínez-Montoya, and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
- Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 114
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 362
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Kival Ngaokrajang, Illustration of Hilbert curve for n = 1..5
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 1.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Crossed Prism Graph.
- Eric Weisstein's World of Mathematics, Cunningham Number.
- Eric Weisstein's World of Mathematics, Fermat-Lucas Number.
- Eric Weisstein's World of Mathematics, Hilbert curve.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Irredundant Set.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
- Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence.
- Eric Weisstein's World of Mathematics, Star Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Apart from the initial 1, identical to
A094373.
See
A008776 for definitions of Pisot sequences.
Cf.
A007583 (a((n-1)/2)/3 for odd n).
-
a000051 = (+ 1) . a000079
a000051_list = iterate ((subtract 1) . (* 2)) 2
-- Reinhard Zumkeller, May 03 2012
-
[2^n+1: n in [0..40]]; // G. C. Greubel, Jan 18 2025
-
A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # Peter Luschny, Apr 20 2009
-
Table[2^n + 1, {n,0,40}]
2^Range[0,40] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {2, 3}, 40] (* Eric W. Weisstein, Sep 21 2017 *)
-
a(n)=2^n+1
-
first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
-
def A000051(n): return (1<Chai Wah Wu, Dec 21 2022
Showing 1-2 of 2 results.
Comments