cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052944 a(n) = 2^n + n - 1.

Original entry on oeis.org

0, 2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, 2058, 4107, 8204, 16397, 32782, 65551, 131088, 262161, 524306, 1048595, 2097172, 4194325, 8388630, 16777239, 33554456, 67108889, 134217754, 268435483, 536870940, 1073741853, 2147483678
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Shortest length of bit-string containing all bit-strings of given length n. - Rainer Rosenthal, Apr 30 2003
Such a bitstring can be obtained by taking a length-2^n binary de Bruijn sequence and repeating the n-1 initial symbols at the end. - Joerg Arndt, Mar 16 2015
Bit string definition is equivalent to minimum number of tosses of a coin to achieve all possible outcomes of n tosses. - Maurizio De Leo, Mar 01 2015
Also the indices of Fermat numbers that can be represented as cyclotomic numbers. Specifically, F(a(n)) = cyclotomic(2^2^n,2^2^n). - T. D. Noe, Oct 17 2003
a(n) = A006127(n) - 1. - Reinhard Zumkeller, Apr 13 2011
Randomly select (with uniform distribution) a length n binary word w. a(n) is apparently the expected wait time for the first occurrence of w over all infinite binary sequences. For example: a(4)=19. We consider A005434(4)=4 distinct classes of length 4 binary words that share the same autocorrelation. There are A003000(4)=6 words that have waiting time = 16; 2 words with waiting time =20; 6 words with waiting time = 18; and 2 words with waiting time =30. 1/16*(6*16 + 2*20 + 6*18 + 2*30) = 19. - Geoffrey Critzer, Feb 27 2014

Examples

			a(3) = 10 because "0001110100" has length 10 and contains all possible patterns of 3 bits:
  0001110100
  ----------
  000.......
  .001......
  ......010.
  ..011.....
  .......100
  .....101..
  ....110...
  ...111....
		

References

  • Discussed in newsgroup de.rec.denksport in Apr 2003
  • N. G. de Bruijn: A combinatorial problem. Indagationes Math. 8 (1946), pp. 461-467.

Crossrefs

Programs

Formula

G.f.: (2-3*x)/((1-2*x)*(1-x)^2).
a(n+1) = 2*a(n) - n + 2 with a(0)=0. - Pieter Moree, Mar 06 2004
For n>=1: partial sums of A000051. - Emeric Deutsch, Mar 04 2004
a(0)=0, a(1)=2, a(2)=5, a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n). - Hermann Kremer (Hermann.Kremer(AT)online.de), Mar 16 2004
a(n) = A000225(n) + n. - Zerinvary Lajos, May 29 2009
E.g.f.: U(0), where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1) )));(continued fraction, 3rd kind, 4-step ). - Sergei N. Gladkovskii, Dec 01 2012
G.f.: G(0)*x/(1-x) where G(k) = 1 + 2^k/(1 - x/(x + 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: Q(0)*x/(1-x), where Q(k)= 1 + 1/(2^k - 2*x*4^k/(2*x*2^k + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: exp(2*x) - (1-x)*exp(x). - G. C. Greubel, Oct 18 2019